Molar Loss Prediction Using Machine Learning Algorithms

Authors

  • HAN THI NGOC PHAN Dentist, Pham Hung Dental Center MTV Company Limited, Pham Hung Street, Binh Chanh district, Ho Chi Minh city, Vietnam

DOI:

https://doi.org/10.47672/ejhs.2736

Keywords:

Molar Loss, Machine Learning, Prediction, Neural Networks, AUC-ROC

Abstract

Purpose: This research aims to construct predictive models for estimating the long-term fate of molars in patients with periodontitis condition.

Materials and Methods: A stacked ensemble model is developed that demonstrates superior accuracy compared to several other machine learning algorithms, including Logistic Regression, Support Vector Machines, Decision Trees, K-Nearest Neighbors, Random Forests, Deep Neural Networks, Gradient Boosting, and Naive Bayes.

Findings: The main outcome is the accurate prediction of molar extraction following active periodontal therapy. The combined model incorporating multi-layer neural networks and logistic regression demonstrates superior area under the curve (AUC = 0.776) for total molar loss. For molar loss attributed specifically to periodontal disease, the deep neural network alone yields the highest AUC (0.774). The ensemble model also achieves the highest accuracy.

Unique Contribution to Theory, Practice and Policy: By utilizing dental patients history data from the USA, this study successfully develops and validates machine learning models for predicting molar tooth loss. The combined model offered the most consistent and accurate results and is available for use in clinical settings to assist with decision-making in periodontics.

Downloads

Download data is not yet available.

References

Bashir, N. Z., Rahman, Z., & Chen, S. L. (2022). Systematic comparison of machine learning algorithms to develop and validate predictive models for periodontitis. Journal of Clinical Periodontology, 49, 958–969.

Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A., & Escobar, G. (2014). Big data in health care: Using analytics to identify and manage high- risk and high-cost patients. Health Affairs, 33(7), 1123–1131.

Christodoulou, E., Ma, J., Collins, G. S., Steyerberg, E. W., Verbakel, J. Y., & Van Calster, B. (2019). A systematic review shows no performance benefit of machine learning over logistic regression for clinical predic- tion models. Journal of Clinical Epidemiology, 110, 12–22.

Deo, R. C. (2015). Machine learning in medicine. Circulation, 132(20), 1920–1930.

Du, M., Bo, T., Kapellas, K., & Peres, M. A. (2018). Prediction models for the incidence and progression of periodontitis: A systematic review. Journal of Clinical Periodontology, 45(12), 1408–1420.

Eickholz, P., Runschke, M., Dannewitz, B., Nickles, K., Petsos, H., Kronsteiner, D., & Pretzl, B. (2021). Long-term prognosis of teeth with class III furcation involvement. Journal of Clinical Periodontology, 48(12), 1528–1536.

Harrison, C. J., & Sidey-Gibbons, C. J. (2021). Machine learning in medicine: A practical introduction to natural language processing. BMC Medical Research Methodology, 21(1), 158.

Kantarjian, H., & Yu, P. P. (2015). Artificial intelligence, big data, and can- cer. JAMA Oncology, 1(5), 573–574.

Krois, J., Graetz, C., Holtfreter, B., Brinkmann, P., Kocher, T., & Schwendicke, F. (2019). Evaluating modeling and validation strategies for tooth loss. Journal of Dental Research, 98(10), 1088–1095.

Leow, N. M., Moreno, F., Marletta, D., Hussain, S. B., Buti, J., Almond, N., & Needleman, I. (2022). Recurrence and progression of periodontitis and methods of management in long-term care: A systematic review and meta-analysis. Journal of Clinical Periodontology, 49(Suppl 24), 291–313.

Mohammad-Rahimi, H., Motamedian, S. R., Pirayesh, Z., Haiat, A., Zahedrozegar, S., Mahmoudinia, E., Rohban, M. H., Krois, J., Lee, J. H., & Schwendicke, F. (2022). Deep learning in periodontology and oral implantology: A scoping review. Journal of Periodontal Research, 57, 942–951.

Ngiam, K. Y., & Khor, I. W. (2019). Big data and machine learning algo- rithms for health-care delivery. The Lancet Oncology, 20(5).

Phan, H. T. N. (2024). EARLY DETECTION OF ORAL DISEASES USING MACHINE LEARNING: A COMPARATIVE STUDY OF PREDICTIVE MODELS AND DIAGNOSTIC ACCURACY. International Journal of Medical Science and Public Health Research, 5(12), 107-118.

PHAN, H. T. N., & AKTER, A. (2024). HYBRID MACHINE LEARNING APPROACH FOR ORAL CANCER DIAGNOSIS AND CLASSIFICATION USING HISTOPATHOLOGICAL IMAGES. Universal Publication Index e-Library, 63-76.

Pretzl, B., Kaltschmitt, J., Kim, T. S., Reitmeir, P., & Eickholz, P. (2008). Tooth loss after active periodontal therapy. 2: Tooth-related factors. Journal of Clinical Periodontology, 35(2), 175–182.

Ravida, A., Troiano, G., Qazi, M., Saleh, M. H. A., Lo Russo, L., Greenwell, H., Giannobile, W. V., & Wang, H. L. (2020). Development of a nomogram for the prediction of periodontal tooth loss using the staging and grading system: A long-term cohort study. Journal of Clinical Periodontology, 47(11).

Saleh, M. H. A., Dukka, H., Troiano, G., Ravida, A., Galli, M., Qazi, M., Wang, H. L. (2021). External validation and comparison of the predictive performance of 10 different tooth-level prognostic systems. Jour- nal of Clinical Periodontology, 48(11), 1421–1429.

Saleh, M. H. A., Dukka, H., Troiano, G., Ravida, A., Qazi, M., Wang, H. L., & Greenwell, H. (2022). Long term comparison of the prognostic performance of PerioRisk, periodontal risk assessment, periodontal risk cal- culator, and staging and grading systems. Journal of Periodontology, 93(1), 57–68.

Saydzai, S., Buontempo, Z., Patel, P., Hasan, F., Sun, C., Akcali, A., Lin, G. H., Donos, N., & Nibali, L. (2022). Comparison of the efficacy of periodontal prognostic systems in predicting tooth loss. Journal of Clinical Periodontology, 49(8), 740–748.

Schwendicke, F., Schmietendorf, E., Plaumann, A., Salzer, S., Dorfer, C. E., & Graetz, C. (2018). Validation of multivariable models for predicting tooth loss in periodontitis patients. Journal of Clinical Periodontology, 45(6), 701–710.

Schwendicke, F., Stolpe, M., & Graetz, C. (2017). Cost comparison of prediction-based decision-making for periodontally affected molars. Journal of Clinical Periodontology, 44(11), 1145–1152.

Shi, S., Meng, Y., Li, W., Jiao, J., Meng, H., & Feng, X. (2020). A nomogram prediction for mandibular molar survival in Chinese patients with periodontitis: A 10-year retrospective cohort study. Journal of Clinical Periodontology, 47(9), 1121–1131.

Sidey-Gibbons, J. A. M., & Sidey-Gibbons, C. J. (2019). Machine learning in medicine: A practical introduction. BMC Medical Research Methodology, 19(1), 64.

Tusher, M. I., Phan, H. T. N., Akter, A., Mahin, M. R. H., & Ahmed, E. (2025). A Machine Learning Ensemble Approach for Early Detection of Oral Cancer: Integrating Clinical Data and Imaging Analysis in the Public Health. International Journal of Medical Science and Public Health Research, 6(04), 07-15.

Downloads

Published

2025-07-18

How to Cite

PHAN, H. T. N. (2025). Molar Loss Prediction Using Machine Learning Algorithms. European Journal of Health Sciences, 11(2), 51–60. https://doi.org/10.47672/ejhs.2736

Issue

Section

Articles