

System-Level Behavior Analysis for Detecting

Advanced Persistent Threats (APTs)

Khaja Kamaluddin

European Journal of Technology

ISSN 2520-0712 (online)

Vol.4, Issue 2, pp1 1 - 17, 2020 www.ajpojournals.org

https://doi.org/10.47672/ejt.2724 1 Kamaluddin (2020)

System-Level Behavior Analysis for Detecting Advanced Persistent Threats

(APTs)

Khaja Kamaluddin
Masters in Sciences, Fairleigh Dickinson University, Teaneck, NJ, USA, Aonsoft

International Inc, 1600 Golf Rd, Suite 1270, Rolling Meadows, Illinois, 60008 US

Article history

Submitted 21.04.2020 Revised Version Received 22.05.2020 Accepted 24.06.2020

Abstract

Purpose: Advanced Persistent Threats

pose a serious threat in cybersecurity

because of their stealth, long presence, and

ability to hide. Most organizations placed

considerable emphasis on signature-based

detection techniques, which were effective

against known malware but often failed to

detect novel, targeted, or user-specific

threats with undefined signatures. This

study investigates system-level behavioral

analysis as a dynamic alternative for

detecting APTs, shifting focus from static

indicators to the real-time behavior of

processes and applications interacting with

the operating system. It emphasizes the

importance of identifying abnormal

activities such as atypical system call

usage, unauthorized process creation,

memory injection, and unpredictable

modifications to the registry or file system.

Materials and Methods: The research

outlines several practical tools and methods

used to capture behavioral data, including

system call monitoring with strace and

Sysmon, process and memory analysis via

Process Monitor and Volatility, and registry

inspection with Autoruns and Rekall. While

these techniques lack automation and often

require significant technical expertise, they

offer valuable insights into threats that

evade conventional antivirus solutions.

Findings: The study acknowledges the

challenges posed by high false positives,

manual rule creation, and scalability

limitations but underscores their critical

role in laying the groundwork for modern

cybersecurity practices.

Unique Contribution to Theory, Practice

and Policy: Based on these findings, the

study recommends the integration of

behavioral detection capabilities into

advanced, automated platforms that

leverage machine learning and cloud-based

analytics. It advocates for a behavior-first

approach that prioritizes system-wide

visibility and proactive threat hunting over

reactive, signature-matching strategies.

These recommendations aim to inform the

development of AI-driven security

solutions capable of detecting complex,

evasive threats like APTs in real time and

at scale.

Keywords: Advanced Persistent Threats

(APTs) (O33); Behavioral analysis (D83);

Memory analysis (C63); Registry activity

(C88); Cybersecurity (O33, H56);

Malware detection (O33); Threat

intelligence (L86).

http://www.ajpojournals.org/
https://orcid.org/
https://doi.org/10.47672/ejt.2723

European Journal of Technology

ISSN 2520-0712 (online)

Vol.4, Issue 2, pp1 1 - 17, 2020 www.ajpojournals.org

https://doi.org/10.47672/ejt.2724 2 Kamaluddin (2020)

INTRODUCTION

Advanced Persistent Threats (APTs) represent one of the most sophisticated and dangerous

forms of cyberattacks, typically executed by well-funded and highly skilled adversaries such

as nation-states or organized cybercrime groups [1]. Unlike conventional attacks that aim for

immediate exploitation, APTs are characterized by their stealth and persistence, often

maintaining unauthorized access to a target network for months or even years [2].

The approach represents a sequence of steps: including initial access, persistence, Privilege

Escalation, Lateral Movement, Data Collection, and Exfiltration [3]. At each step, attackers

utilize a mix of custom malware, fileless techniques, and legitimate tools like PowerShell,

WMI, or RDP to blend into regular system activity and avoid triggering conventional defenses.

Detection methods that assume signatures such as antivirus programs, firewall policies and file

hash databases are often not effective against these threats because they rely much on static

indicators of compromise (IoCs). APTs are skilled at bypassing these systems by continually

evolving their tactics and using “living-off-the-land” binaries (LOLBins) that do not exhibit

obvious malicious properties [4]

In response to these stealth threats, security professionals have begun to rely more on behavior-

based detection which looks at file activities rather than dwelling on static identifiers. Table 1

shows advantages and drawbacks of both methods.

Table 1: Signature-Based vs. Behavioral Detection

Aspect Signature-Based Detection Behavioral Detection

Detection Method Matches known patterns

(hashes, signatures)

Monitors system behavior

(e.g., syscalls, processes)

Effectiveness Against

New Threats

Poor against unknown or

obfuscated malware

Effective against novel or

fileless attacks

Evasion Resistance Easily bypassed by

polymorphic malware

Harder to evade due to focus

on system behaviors

False Positives Low, with good signature

updates

Higher, due to potential

benign anomalies

Detection Timing Post-compromise (after

payload is active)

Real-time or early in attack

lifecycle

APT Detection

Suitability

Limited, misses stealthy APTs Strong, detects persistent and

low-noise APTs

APT detection needs to shift from the high-level scope of symptoms to a lower-level analysis

of system-level actions including system calls, process related interactions, memory

manipulation, and operations on the registry and file system. Signals at this level expose far

more accurate and reliable indications of compromise in the form of how the OS is being used

irrespective of file name, hash, or any encryption [5].

Obfuscation of system level behavior is exponentially harder for an adversary as compared to

obfuscation of static artifacts. Even in polymorphism or fileless , malware cannot escape

interaction with the OS in pursuit of its objectives, for example: by creating hidden processes,

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.4, Issue 2, pp1 1 - 17, 2020 www.ajpojournals.org

https://doi.org/10.47672/ejt.2724 3 Kamaluddin (2020)

injecting code into the memory, editing registry runkeys or establishing unauthorized network

sessions [6].

If a document viewer (winword.exe) creates and execute a command shell (cmd.exe), and

writes out PowerShell scripts, this particular operation distinguishes itself as suspicious even

though it does not match any signature of known malware.

Further, system-level analysis has the effect of integrating disparate data domains. Relating

observed changes to memory, registry changes, and actions in a process to a common analysis

report. Such a multifaceted point of view effectively contributes to identifying APTs, which

could be masked by the background of regular system behaviors.

The result is that system-level behavioral analysis supports robust, future-oriented defense not

only by uncovering underlying dangers but also by providing actionable findings to combat

new cyber perils.

This research studies how at the system level behavioral analysis was exploited to uncover

Advanced Persistent Threats (APTs). The core objectives are:

i. Analyze system-level behavioral techniques (system calls, process analysis, and

memory forensics) for APT detection.

ii. Evaluate their efficacy against APT tactics (privilege escalation, fileless attacks) and

limitations (false positives, scalability).

iii. Assess their relevance in modern defenses and integration with AI/threat intelligence.

APT Tactics and Threat Landscape

Anatomy of an APT Attack

APT activity is divided into several stages with insistence on covert activities, extended

residence, and persistent goal attainment.

i. Initial Access: Target systems are often gained access to by adversaries who employ

such techniques as spear phishing, taking advantage of vulnerable systems, or taking

over official entry ways such as RDP or VPN.

ii. Privilege Escalation: Once attackers infiltrate a system, it is known that they usually

exploit vulnerabilities, or misconfigurations in order to gain elevated privileges, such

as those of an administrator or a root user.

iii. Persistence: In order to maintain their presence, attackers regularly utilize backdoors,

manipulate registry entries, or implement malware which disables their removal once

the system restarts. Rootkits, malicious scripts, or reverse engineering of scheduled

tasks are methods which are widely utilised by attackers.

iv. Lateral Movement: Attackers roam the network further to find more intelligence to

extract from more systems and to further their foothold. In order for this to be

continuous, some satellite constellations are made up of several satellites that operate

on different orbits, in order to ensure high availability.

v. Exfiltration: During this final stage, hackers steal and upload-sensitive information

(proprietary data or personal records) to a remote server. This segment is usually

performed in secret with the purpose of avoiding security leaving encrypted channels

and transferring data in small, unobtrusive increments for undetected transfer.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.4, Issue 2, pp1 1 - 17, 2020 www.ajpojournals.org

https://doi.org/10.47672/ejt.2724 4 Kamaluddin (2020)

Because of their stealth and persistence, APT attacks are difficult to identify in a real-time

basis. In order to mask their activity, attackers commonly deploy rootkits, encrypt their

activities to hide their flight, and use fileless malware which executes in memory to circumvent

signature detection [7]. The processes through which APTs can hide while establishing a

persistent presence in the intended system over time.

Notable APT Campaigns

Prominent APT events have been very effective on awareness and knowledge of current cyber

threats. Some notable ones include:

i. Stuxnet (2010): Stuxnet targeted industrial control systems directly by exploiting

weaknesses in Programmable Logic Controllers (PLC) and employed such to

malicious purposes [8]. The attackers managed a deceptive point of entry using signed

drivers, which allowed the malware to circumvent protective measures and negatively

affect Iran’s nuclear installations.

ii. APT28 / Fancy Bear (2015): As well as its other name APT28, you have APT28

being better known as Fancy Bear, and this group, frequently used spear phishing and

credit card dumping tools such as Mimikatz to penetrate security and steal valuable

data. Some of their activities included politically inspired espionage tendencies that

were mostly targeting the government organizations [9].

iii. APT29 / Cozy Bear (2015): APT29/Magic worm was notorious of using fileless

techniques and legitimate tools such as PowerShell and WMI to execute their attack.

Their main areas of activity were cyber espionage, consistent attacks on diplomatic

and governmental institutions [9].

iv. Operation Aurora (2010): Operation Aurora (2010) targeted major tech firms like

Google using a zero-day flaw in Internet Explorer (CVE-2010-0249) to gain initial

access. The attack involved memory injection into legitimate processes

(explorer.exe), registry modifications for persistence, and encrypted outbound

communication for data exfiltration. System-level behaviors included suspicious child

processes, registry changes, and anomalous network activity, aligning with techniques

like process injection and C2 over HTTPS.

Table 2: Summary of Major APT Campaigns

Name Year Attack Vector Key Tools Behavior Observed

Stuxnet 2010 USB/PLC Rootkits Registry edits, DLL

injection

APT28 2015 Spear Phishing Powershell,

Mimikatz

Credential theft,

persistence

APT29 2015 Fileless Attacks PowerShell,

WMI

Cyber espionage,

stealthy execution

Operation

Aurora

2010 Zero-day Exploit Custom malware Corporate espionage,

targeted attacks

According to Table 2, the campaigns used certain tactics and tools, which are a useful source

of information on the characteristics of APT attacks, and their ongoing evolution.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.4, Issue 2, pp1 1 - 17, 2020 www.ajpojournals.org

https://doi.org/10.47672/ejt.2724 5 Kamaluddin (2020)

MITRE ATT&CK Framework

The MITRE ATT&CK [10] framework provides a comprehensive, structured repository of

adversarial tactics, techniques, and procedures (TTPs), enabling security practitioners to

analyze and categorize malicious behavior. In the context of system-level behavior analysis,

ATT&CK is especially valuable for mapping low-level system events such as process creation,

registry access, and API call sequences to higher-order adversary behavior.

Tactics define the adversary’s objectives at each stage of an attack, from initial access to data

exfiltration. System-level signals aligned with these tactics can include:

● Initial Access: Process execution from email clients (e.g., outlook.exe) spawning

unusual child processes (e.g., cmd.exe or powershell.exe), often observed during

spearphishing with attachment payloads.

● Persistence: Registry modifications (e.g., HKCU\Software\Microsoft\Windows\

CurrentVersion\Run) or scheduled task creation detected through monitoring API calls

like RegSetValueEx or CreateService.

● Privilege Escalation: Use of token impersonation or DLL sideloading, detectable

through anomalies in privilege tokens or DLL load paths.

● Defense Evasion: Fileless malware execution using PowerShell or WMI, which may

bypass traditional file-based AV detection but leave traces in script execution logs or

memory usage anomalies.

● Exfiltration: Data staging in temporary directories followed by encrypted outbound

connections, observable via system call sequences and anomalous network API activity

(e.g., WinInet, WinSock).

Techniques in ATT&CK describe the specific methods attackers use, which map directly to

system-level observables. For example:

● T1055: Process Injection: Can be detected by monitoring Write Process Memory and

Create Remote Thread API usage.

● T1086: PowerShell: Monitored through command-line auditing or script block logging.

● T1027: Obfuscated Files or Information: Linked with entropy-based detection of

memory-resident payloads.

Procedures reflect how real-world threat actors implement these techniques. For instance:

● Mimikatz (associated with T1003 – OS Credential Dumping) uses direct memory reads

to extract credential hashes from LSASS, which triggers suspicious Read Process

Memory calls on lsass.exe.

● APT29 employs PowerShell and WMI to execute fileless malware, correlating to

specific system behaviors such as frequent WmiPrvSE.exe activity coupled with

dynamic code execution.

By incorporating ATT&CK into system-level behavior analysis, defenders can better

contextualize low-level events within a broader threat model, improving detection of stealthy,

technique-driven attacks even when traditional signature-based tools fail.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.4, Issue 2, pp1 1 - 17, 2020 www.ajpojournals.org

https://doi.org/10.47672/ejt.2724 6 Kamaluddin (2020)

Importance for APT Detection:

Threat Intelligence: By linking observed attack trends to known adversary groups, such as

APT28 or APT29, the framework gives relevant insight into the tactics and techniques used by

adversary groups.f

i. Detection & Response: With the TTPs of ATT&CK available, defenders can be more

empowered to build the detection frameworks, which simplifies their effort in

identification of APTs through suspect actions.

ii. Red and Blue Team Exercises: In Red Team drills or Blue Team simulations ATT&CK

provides a shared ground for assessment and improvement of the security procedures.

APT28 may abuse Mimikatz for Credential Dumping in the course of Privilege Escalation

operations, and those in defense should monitor for unusual memory access or privilege

escalation activities to be able to detect threats.

Use of the Mitre Attack Matrix in Table 3 is used to discuss the real world consequences of

these tactics on the adversary actions.

Table 3: Mapping of APT Tactics, Techniques, and Tools Observed in System-Level

Behavioral Analysis

Tactic Technique Tool

Privilege Escalation Credential Dumping Mimikatz

Exfiltration Encrypted Transfer PowerShell

Persistence Registry Modification Custom Backdoor

System-Level Behavioral Detection Techniques

System Call Monitoring

System calls serve as the primary interface between user-space applications and the operating

system kernel [11]. Any application makes a system call when it needs to communicate with

system resources, including the execution of file I/O, process initiation, and network

communication. Encompassing among the list of APT attackers, malicious actors often use

system calls in carrying out bad acts, which include installing malicious software, stealing data

and gaining higher privilege.

System call monitoring is directed towards anomaly-based detection of potentially malicious

activity from system call behavior. In doing so, this technique reveals unusual behavior that

could be missed by traditional systems based on signatures or static analysis.

Tools

 Strace (Linux): Strace is a crucial diagnostic tool for Linux, in which, analysts can see

system calls and signals in real-time. Strace watches an application level of system call

for capturing anomalous behaviors by logging how processes interact with the

operating system[12].

 AuditD (Linux): A part of Linux audit system, AuditD provides the possibility to

monitor system events, for instance, system calls, to be safe. The ability of the AuditD

to log for every system call allows detection of unusual activities from the kernel[13].

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.4, Issue 2, pp1 1 - 17, 2020 www.ajpojournals.org

https://doi.org/10.47672/ejt.2724 7 Kamaluddin (2020)

 Sysmon (Windows): Sysmon (System Monitor) from Sysinternals is a Windows tool

that monitors process activity in depth, network connections, and changes to the file

system. Thanks to its capability of monitoring Windows activity in detail, Sysmon

proves to be a useful instrument in detecting indications of malicious behavior on a

system level [14].

Detection Techniques

A number of techniques have been designed to identify suspicious things via tracking system

call logs. The angle here is to identify the distortions or the abnormalities in the behaviour of

the normal system calls which may indicate malicious work. Some notable detection

approaches include:

 Frequency-based Syscall Anomaly Detection: Statistics on when system calls occur

is also used to identify any anomalous activity. Any high increase in system calls that

utilize either process sparing or network communication is a common occurrence

during intrusions or malware activity. Persistence activities of malware are frequently

accompanied by anomalous system call activity.

 Sequence Modeling (Simple Pattern Matching): Pattern matching was used by

sequence modeling to detect suspicious syscall patterns before machine learning was

adopted on a large scale. For example, if a row of system calls fits in line with proven

attack strategies e.g., process injection (via syscalls like NtWriteVirtualMemory) it

implies a possible intrusion attempt by an attacker. It is effective in detecting the

predefined attack behaviors, but it remains largely ineffective in dealing with

developing and intricate tactics.

 Mapping System Call Patterns to Specific TTPs: Specific system calls are often

linked to particular tactics, techniques, and procedures (TTPs) used in advanced attacks.

For instance, an attacker using process injection might trigger system calls like

NtWriteVirtualMemory or CreateRemoteThread. By correlating system call patterns

with documented TTPs (e.g., from the MITRE ATT&CK framework), security teams

can more effectively detect malicious activity early in the attack chain.

These techniques have been evaluated in enterprise sandbox environments and academic

settings using benchmark datasets such as DARPA, ADFA-LD [21], and custom Red Team

simulations, enabling consistent validation of detection accuracy and practical effectiveness.

 Figure 1: System Call Flow Diagram

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.4, Issue 2, pp1 1 - 17, 2020 www.ajpojournals.org

https://doi.org/10.47672/ejt.2724 8 Kamaluddin (2020)

Process Behavior Analysis

Process behavior analysis tries to identify questionable, or hostile behaviors emerging from

processes in use in the system [15]. These tools provide the following detections to include:

unauthorized process initiation, privilege level elevation, code injection and anomalous

processes typical of Advanced Persistent Threats. Analyzing process interactions helps

administrators to identify deviation from normal behavior and act against threats as it is

happening.

Tools

It is possible to improve monitoring and analyzing the behavior of the process by using various

tools built to monitor system activities and signal possible problems:

 Process Monitor (Sysinternals): This resource pays careful attention to monitoring

the system in near real-time, noting down all the API calls made by the processes. It

traces all system events (file system activity, registry changes, network activity and

even process spawning). Monitoring these events enables Process Monitor to register

abnormal process actions such as an attempt by a non-authorized process to access a

system or cases where a process is compromised by an existing process.

 pslist, pstree (Linux/Windows):These utilities offer insight into currently running

processes. pslist provides a flat list of processes on Windows, while pstree presents a

hierarchical view in Linux, making it easier to identify suspicious parent-child

relationships. For example, a command-line shell (e.g., cmd.exe) spawned by a

document editor (e.g., word.exe) may signal process injection or abuse of trusted

applications.

 Volatility Framework: Volatility acts as an advanced tool in memory forensics, useful

in analysis once infected since it can analyze executing processes in system RAM.

Volatility can show through its analysis the processes which are masked or injected,

which can be in memory or hidden within other running applications, which might pass

unnoticed.

Detection Features

Some of the major indications of potential dangerous process behavior security teams should

be vigilant of are:

 Parent-child Anomalies: Attacker use trusted existing programs to run their malicious

processes, thus making it difficult for security measures to detect them. If, from a word-

processing utility, such as word.exe, a command line utility for example, cmd.exe is

prompted it is a suspicious activity. Monitoring with Process Monitor and pslist can

identify anomalies in the parent-child hierarchy that they monitor in real time by tracing

their parent-child relationships.

 Suspicious Process Names: Sometimes, adversaries try to apply obfuscation methods

in their effort to make malware appear to be trusted application. Attackers use deceptive

process names that look like system or the real software to hide their thwarting

activities. Using monitoring to define and verify legitimate names of processes can

expose suspicious activities that indicate, a covert attack. Real-time observation using

tools such as Process Monitor helps place these differences in plain sight.

 Elevated Privileges: APT attackers are commonly interested in privilege escalation for

their malicious processes enabling them to have SYSTEM or root access. This ends up

giving attackers complete power in tampering with the entire system in whatever they

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.4, Issue 2, pp1 1 - 17, 2020 www.ajpojournals.org

https://doi.org/10.47672/ejt.2724 9 Kamaluddin (2020)

want. Monitoring suspicious privilege escalation events is the essential step to

determining the attempts of attackers to bypass security controls and gain more access.

The technologies, such as Volatility are able to detect and trace privilege escalation

actions that are hidden from more standard monitoring solutions.

 Orphaned Processes: An orphaned process is a process which no longer relies on the

original parent process. It is a clear indication of possible intrusion if attack operators

succeed to hijack legitimate procedures or to inject own code into other ones. Pstree

and Volatility are used to find orphaned processes and this may indicate that the

compromised the system.

 Injected Threads or Hollowed Processes: Code injection is a complex method that

allows intruders to inject a malicious code into a real process in order to statically evade

inspection. For instance, process hollowing is a process where an enemy uses legitimate

process memory to be overwritten with malicious code. Through memory forensics,

using like Volatility, it is possible to determine whether an injected thread or hollowed

processes exist as violations in the memory structure of an active process will be

recorded and raised.

Attackers often use process injection to gain elevated privileges or run malicious code within

legitimate processes. Anomalies such as cmd.exe being spawned by word.exe can be detected

using real-time tools like Process Monitor. If privilege escalation or hidden thread execution is

suspected, forensic tools like pslist and Volatility help analyze process hierarchies and inspect

memory for injected code. Combining real-time monitoring with post-mortem forensics

enables layered threat detection. However, Volatility is offline and resource-intensive, while

real-time tools may miss stealthy, memory-resident attacks without deeper analysis.

Registry and File System Monitoring (Windows Focused)

The goal of registry and file system monitoring is to detect persistence mechanisms and

privilege abuse in Windows systems by identifying suspicious registry keys and files.

Malicious actors often modify the Windows registry or manipulate files in specific directories

to establish persistence and maintain access to compromised systems, even after a reboot or

system restart [16]. By monitoring these areas, defenders can identify indicators of compromise

(IoCs) and take preventive or corrective actions.

Detection Features:

 Registry Keys: To ensure that an unwanted program will automatically execute,

malicious software updates registry entries associated with the system boot or user login

events regularly. Registration keys that are often changed by the attackers such as:

 HKCU\Software\Microsoft\Windows\CurrentVersion\Run: This registry value

contains records of programs that run automatically at user logon; hackers may use this

facility to deploy and activate malicious files shortly after logon

 Services: Virtualization apps or hidden processes in Windows services can be executed

by adversaries to enable malware to be initiated with administrative rights, when the

machine is initialized.

 Scheduled Tasks: Hackers can install or modify the scheduled task to maintain their

malware active and activate it to run at specific times.

 File System Locations: Attackers often store payloads or supporting files in less

monitored directories to avoid detection. Notable locations include:

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.4, Issue 2, pp1 1 - 17, 2020 www.ajpojournals.org

https://doi.org/10.47672/ejt.2724 10 Kamaluddin (2020)

 Temporary Directories (%TEMP %): Frequently used for staging malware or

dropping payloads due to limited oversight and automatic clearing on reboot.

 AppData and Startup Folders: Common persistence vectors, especially

%AppData%\Roaming and %ProgramData%. Malware placed here is typically

configured to run on login or boot.

Tools:

 Sysinternals Autoruns: This powerful tool from Sysinternals provides a

comprehensive view of all auto-starting locations, including registry keys and file

locations. Autoruns helps security teams detect unwanted startup items or persistence

mechanisms that attackers may have left behind.

 Windows Built-in Auditing Policies (enabled via GPO): Windows Group Policy

Objects (GPOs) can be configured to enable auditing of specific registry changes,

process creation events, and file system modifications. This allows administrators to

detect when malicious actors attempt to modify registry entries or files in sensitive

locations.

 Tripwire: Tripwire is a filesystem integrity monitoring tool that can detect

unauthorized changes to critical files or directories. It can be configured to alert on

changes to files in specific locations (e.g., Temp directories or StartUp folders).

Tools for Monitoring and Detection

 Unusual Timestamps: Malicious files or registry entries often have suspicious

timestamps, such as files with creation or modification times that don't align with

normal system behavior.

 Hidden Files: Some malware attempts to hide files using attributes that prevent them

from being easily detected by users or administrators.

 Script Execution: Monitoring for unusual script execution patterns (e.g., PowerShell

or batch scripts) in specific directories can help identify malware that uses scripts to

persist and execute on the system.

Memory Analysis and Forensics

Memory analysis and forensics aim to detect hidden or reflective malware running in volatile

memory. Many sophisticated attacks, such as those involving advanced malware, often avoid

detection by running entirely in memory or by using code injection techniques [17]. Analyzing

system memory can reveal evidence of malware that has not been written to disk or that uses

non-standard techniques to avoid detection by traditional file-based security tools.

Detection Features:

 Code Injection Detection: The widely used method of code injection detection is

introducing malicious code into the memory of programs that are otherwise functioning

normally. Security technologies may find it more difficult to detect the virus because

the injected code may be functioning inside the framework of trustworthy, genuine

processes. Since they don't match any disk-backed files, non-image-backed memory

regions that could be indicators of injected code can be found using memory analysis

tools.

 Process Hollowing: The act of an attacker establishing a suspended process and then

introducing malicious code into its memory is known as "process hollowing." The

malicious code executes in lieu of the legal code of the target process. By detecting

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.4, Issue 2, pp1 1 - 17, 2020 www.ajpojournals.org

https://doi.org/10.47672/ejt.2724 11 Kamaluddin (2020)

differences between a process's memory structure and the associated disk-backed

image, memory analysis can reveal potential process hollowing attacks.

 Kernel Object Discovery: The technique of searching for odd structures or dubious

kernel objects that might indicate background rootkits or kernel-level malware is known

as kernel object detection.

By using these tools and techniques, memory forensics can reveal the presence of advanced

persistent threats (APTs) and other sophisticated attacks that would otherwise be difficult to

detect with traditional security methods.

Tools:

 Volatility Framework: Volatility is a well-established memory forensics tool that

offers a variety of plugins for memory analysis. Volatility can scan memory dumps to

detect processes, DLLs, injected code, and other signs of memory-based attacks, such

as rootkits or reflective malware. Common plugins include those for scanning

processes, listing DLLs, and detecting injected code in memory.

 Rekall: Google's Rekall is another powerful memory analysis tool. It's used to analyze

volatile memory dumps and identify potential memory-based attacks. Rekall's features

include memory forensic analysis for suspicious activity like as code injection or

memory-based rootkits, process scanning, and kernel object identification.

 Redline (FireEye): Redline is a comprehensive host investigation tool developed by

FireEye that enables analysts to collect and examine memory and disk artifacts. It

supports acquisition of volatile memory, timeline analysis, malware detection, and

indicator-based hunting. Redline can detect in-memory threats such as reflective DLL

injection, unauthorized process hollowing, and registry tampering. It also includes

integrity verification of key system files and supports IOC scanning, making it effective

for both proactive and reactive incident response.

Rule-Based and Signature-Less Behavior Detection

The use of machine learning (ML) in security tools, rule-based and signature-less behavior

detection was greatly aided by heuristics and bespoke rule engines. Unlike classic signature-

based detection, which relies on known attack patterns (such as file hashes), behavior-based

detection uses dynamic analysis to identify anomalous or suspicious activities [18]. This

technique enables the identification of novel or unknown threats by relying on their behavior

instead of their distinctive signature.

Pre-established rules are used in behavioral detection to find patterns of activity that deviate

from normal system or network behavior. These rules may be based on a variety of factors,

including unexpected traffic quantities, odd file system alterations, or the application of well-

known attack methodologies. Security systems can identify potential risks without prior

knowledge of the assault thanks to real-time system behavior monitoring and analysis.

Tools & Frameworks

Snort (Behavioral Rules)

Snort is a widely used open-source intrusion detection system (IDS) that allows for the creation

of custom rules to detect patterns of behavior in network traffic. Users can build rules to

identify anomalous network activity, such as surges in traffic volume or suspicious connection

patterns. Because Snort allows for the creation of rules based on a variety of criteria, including

source and destination IP addresses, protocols, and payload content, it is a helpful tool for

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.4, Issue 2, pp1 1 - 17, 2020 www.ajpojournals.org

https://doi.org/10.47672/ejt.2724 12 Kamaluddin (2020)

behavioral detection. One example of a behavioral rule in Snort is the detection of unusually

high network traffic, which could indicate a Distributed Denial-of-Service (DDoS) assault.

Bro/Zeek IDS

Bro, now known as Zeek, is another powerful network monitoring tool that includes a

behavioral scripting engine. It enables users to define custom scripts to analyze network traffic

and detect unusual behaviors [19]. Zeek's ability to examine process context from logs allows

it to spot odd network behavior, such as dubious file transfers or unauthorized access attempts.

In large company settings, Zeek is widely utilized for comprehensive network traffic analysis

and threat detection.

Symantec, McAfee AV Heuristics

Before machine learning was included into antivirus software, Symantec and McAfee used

behavior-based scoring models to detect malware. These models assessed both runtime

behavior (such as the actions a process performs while it is executing) and static features (such

as file characteristics). The heuristic analysis would identify behaviors that might be indicative

of malware, such as efforts to change system files or create persistent registry entries. These

heuristic methods were crucial for locating malware versions without a recognized signature

yet exhibiting dangerous behavior patterns.

 Behavior-based detection systems often rely on predefined rules to trigger alerts when certain

suspicious behaviors are observed. Some common rules include:

Hackers usually change registry keys to remain persistent on a compromised system. Malicious

behavior, such as malware generating new auto-start registry entries, may be indicated by a

rule that rapidly detects several registry alterations.

Many attackers attempt to establish persistence during periods of low system activity, such as

weekends or off-peak hours. A rule that monitors for any strange persistence efforts at these

times (e.g., registry changes or freshly scheduled jobs) could help detect stealthy assaults.

Figure 2: Sample Snort Behavioral Rule Structure

This figure shows an example of a Snort rule structure for behavioral detection. Among other

patterns of behavior in network traffic, the rule is designed to identify anomalous connections

or unexpected traffic quantities. It describes a number of prerequisites and actions to identify

threats and determine how to respond to them. The image shows how specific behaviors that

can indicate an ongoing incursion or attack can be identified using custom rules.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.4, Issue 2, pp1 1 - 17, 2020 www.ajpojournals.org

https://doi.org/10.47672/ejt.2724 13 Kamaluddin (2020)

Table 4: Behavioral Indicators vs Static Signatures

Behavioral Indicators Static Signatures

Detects anomalies in system/network activity Detects known threats via predefined

patterns (e.g., file hashes)

Monitors for unusual patterns (e.g., failed

logins, process behavior)

Compares to known attack signatures

Examples: Failed logins, abnormal registry

changes

Examples: Known malware hashes, specific

attack patterns

Detects new and evolving threats Limited to known threats

Identifies novel or zero-day attacks Accurate for known threats, fast detection

Possible false positives, resource-heavy Can't detect new or polymorphic threats

Behavioral indicators, as shown in Table 4, focus on spotting anomalies in system and network

activity, whereas static signatures depend on known patterns (such file hashes). Behavioral

signs can include weird process execution patterns, unexpected registry persistence, or multiple

unsuccessful login attempts. Conversely, static signatures use preset criteria, such as a specific

file hash or known malware signature, to identify dangers. The table highlights the distinctions

between these two approaches as well as the advantage of behavioral detection in identifying

emerging or novel risks.

Because behavior-based detection has a significant advantage over signature-based techniques

and can detect novel assaults that have never been observed before, it is an essential component

of modern security systems.

Limitations and Challenges Techniques

In addition to static signatures, the introduction of system-level behavioral detection techniques

provided a crucial foundation for identifying malicious activity; nonetheless, these tactics had

several significant disadvantages. Most tools and techniques at the time operated in silos, relied

heavily on human configuration, and lacked the intelligence and scalability required for

enterprise-level security.

Manual Configuration Overhead

A significant amount of manual setup was required for behavioral detection technologies.

Security analysts have to develop, test, and refine detection criteria based on threat intelligence

and system expertise. This method takes a great deal of experience and constant attention to

evolving threat behaviors. For example, rule sets in tools like Snort or Zeek needed to be

updated often to stay effective, and context was often needed for alert interpretation that was

difficult to find in isolated logs or host-based outputs.

Lack of Real-Time Correlation

Another major barrier was the absence of real-time correlation between data sources. A

centralized system for gathering and analyzing network and endpoint events was absent from

most host-based behavioral tools, such as Process Monitor or AuditD, which operated

independently. As a result, their ability to identify coordinated or dispersed attacks that

impacted several systems was diminished. In the lack of integrated intelligence or correlation

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.4, Issue 2, pp1 1 - 17, 2020 www.ajpojournals.org

https://doi.org/10.47672/ejt.2724 14 Kamaluddin (2020)

engines, defenders were often reactive, responding only after indications of compromise had

already materialized.

False Positives

Heuristic-based detection methods, although helpful in flagging potentially malicious activity,

were notorious for generating high false positive rates. Because these systems relied on

predefined rules and behavioral patterns, they often flagged benign actions as threats. For

instance, a legitimate administrator running PowerShell scripts for maintenance could be

misclassified as malicious activity [20]. Over time, such frequent false positives contributed to

alert fatigue, where security personnel either ignored alerts or struggled to differentiate real

threats from noise.

Limited ML Adoption

Perhaps the most significant technical limitation was the lack of machine learning (ML)

integration. Behavioral detection systems did not leverage deep learning or unsupervised

learning due to the scarcity of labeled behavioral datasets and the computational limitations of

the time. While basic heuristics were in use, there was no intelligent model capable of adapting

to emerging threats or generalizing across varied environments. As a result, detection systems

lacked adaptability and often failed to recognize novel or obfuscated attacks.

Figure 3: False Positive Rate vs. Detection Depth (Heuristic-Based Systems)

Figure 3 illustrates the trade-off between false positive rates and detection depth in heuristic-

based systems. As detection methods attempt to monitor more complex system interactions and

apply stronger heuristics in an attempt to probe deeper into behavior, the rate of false positives

tends to increase dramatically.

This graph illustrates a fundamental flaw in early heuristic systems: while they may identify

more subtle threats at higher inspection levels, they are more likely to identify acceptable

activities as well, which reduces the system's practicality.

This study significantly advances cybersecurity by shifting the focus from static signature-

based detection to dynamic system-level behavioral analysis, offering critical implications for

theory, practice, and policy. Theoretically, it reinforces behavioral anomaly detection as a

foundational principle, demonstrating that even stealthy APTs leave detectable traces through

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.4, Issue 2, pp1 1 - 17, 2020 www.ajpojournals.org

https://doi.org/10.47672/ejt.2724 15 Kamaluddin (2020)

system interactions such as process behavior and memory manipulation. By aligning these

behaviors with frameworks like MITRE ATT&CK, the research enhances threat modeling and

paves the way for AI-driven detection. Practically, it provides actionable guidance for using

tools like Sysmon, Volatility, and Process Monitor to identify evasive techniques such as

process hollowing and LOLBin abuse, promoting behavior-first detection strategies within

SOCs. From a policy perspective, the study supports regulatory frameworks like NIST and ISO

27001 by advocating continuous monitoring, proactive threat hunting, and investments in

behavioral EDR/XDR solutions. It also highlights the need for skilled analysts, influencing

workforce development and cybersecurity training programs.

CONCLUSION AND RECOMMENDATIONS

Conclusion

System-level behavioral detection methods provided security teams with a powerful approach

to identifying signs of Advanced Persistent Threats (APTs) that frequently bypassed traditional

signature-based tools. By concentrating on how processes and applications interacted with the

operating system, these techniques enabled defenders to spot unusual patterns and uncover

hidden attacks.

Key methods involved monitoring system calls, analyzing parent-child process relationships,

detecting unauthorized file or registry modifications, and inspecting memory for signs of code

injection or process hollowing. Tools such as Sysmon, Process Monitor, Volatility, and Snort

played a crucial role in capturing and interpreting this low-level activity. Although these tools

lacked automation and real-time correlation and often required significant technical expertise,

they offered critical visibility into threats that conventional antivirus solutions missed.

However, the approach had its limitations. It relied heavily on manually defined rules, frequent

adjustments, and suffered from high false positive rates. Additionally, most tools operated

independently without centralized aggregation or correlation, making it difficult to construct a

unified, real-time view of attacks especially in large enterprise environments.

Recommendations

Despite these challenges, system-level behavioral analysis became a foundational element in

the development of modern detection technologies. The experience gained from these early

techniques demonstrated the value of behavior-based monitoring over static signatures and

directly informed the emergence of automated detection systems using machine learning,

behavioral scoring, and integrated threat intelligence. These efforts ultimately shaped the

industry's shift toward more intelligent and adaptive cyber defense solutions by proving that

understanding behavior at the syscall, process, memory, and file levels is essential to detecting

advanced, evasive threats.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.4, Issue 2, pp1 1 - 17, 2020 www.ajpojournals.org

https://doi.org/10.47672/ejt.2724 16 Kamaluddin (2020)

REFERENCES

[1] A. J. C. Lima, Advanced Persistent Threats, M.S. thesis, Univ. de Lisboa, Portugal, 2015.

[2] S. Singh et al., "A comprehensive study on APT attacks and countermeasures for future

networks and communications: challenges and solutions," J. Supercomputer., vol. 75,

pp. 4543–4574, 2019.

[3] P. Bhatt, E. T. Yano, and P. Gustavsson, "Towards a framework to detect multi-stage

advanced persistent threats attacks," in Proc. 2014 IEEE 8th Int. Symp. Service

Oriented System Engineering, 2014.

[4] B.I.T.S. Forensics, "SANS Institute," 2019.

[5] J. Samuel et al., "Survivable key compromise in software update systems," in Proc. 17th

ACM Conf. Computer and Communications Security, 2010.

[6] F. Scrinzi, Behavioral Analysis of Obfuscated Code, M.S. thesis, Univ. of Twente, 2015.

[7] M. Ussath et al., "Advanced persistent threats: Behind the scenes," in Proc. 2016 Annu.

Conf. Information Science and Systems (CISS), 2016.

[8] A. Matrosov et al., "Stuxnet under the microscope," ESET LLC, vol. 6, pp. 23, Sept.

2010.

[9] H. Mwiki et al., "Analysis and triage of advanced hacking groups targeting western

countries critical national infrastructure: Apt28, Red October, and Regin," in Critical

Infrastructure Security and Resilience: Theories, Methods, Tools and Technologies,

2019, pp. 221–244.

[10] B. E. Strom et al., "MITRE ATT&CK: Design and philosophy," Tech. Rep., the MITRE

Corporation, 2018.

[11] R. Nikolaev and G. Back, "VirtuOS: An operating system with kernel virtualization," in

Proc. 24th ACM Symp. Operating Systems Principles, 2013.

[12] G. Damri and D. Vidyarthi, "Automatic dynamic malware analysis techniques for Linux

environment," in Proc. 2016 3rd Int. Conf. Computing for Sustainable Global

Development (INDIACom), 2016.

[13] S. Miclea, "Windows and Linux security audit," J. Appl. Bus. Inf. Syst., vol. 3, no. 4, pp.

117, 2012.

[14] F. Nilsson et al., "SysMon–A framework for monitoring and measuring real-time

properties," 2012. [Online]. Available: https://www.diva-

portal.org/smash/get/diva2:535850

[15] C. M. Anderson and D. Kincaid, "Applying behavior analysis to school violence and

discipline problems: Schoolwide positive behavior support," The Behavior Analyst,

vol. 28, pp. 49–63, 2005.

[16] F. Apap et al., "Detecting malicious software by monitoring anomalous Windows

registry accesses," in Proc. Recent Advances in Intrusion Detection (RAID 2002),

Zurich, Switzerland, Oct. 2002.

[17] A. Case and G. G. Richard III, "Memory forensics: The path forward," Digital

Investigation, vol. 20, pp. 23–33, 2017.

[18] T. Liggett, Evolution of Endpoint Detection and Response Platforms, M.S. thesis, Utica

College, 2018.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.4, Issue 2, pp1 1 - 17, 2020 www.ajpojournals.org

https://doi.org/10.47672/ejt.2724 17 Kamaluddin (2020)

[19] M. Holkovič, O. Ryšavý, and J. Dudek, "Automating network security analysis at

packet-level by using rule-based engine," in Proc. 6th Conf. Engineering of Computer

Based Systems, 2019.

[20] W. Forstmeier, E.-J. Wagenmakers, and T. H. Parker, "Detecting and avoiding likely

false-positive findings–a practical guide," Biol. Rev., vol. 92, no. 4, pp. 1941–1968,

2017.

[21] M. Xie, J. Hu, and J. Slay, "Evaluating host-based anomaly detection systems:

Application of the one-class SVM algorithm to ADFA-LD," in Proc. 11th Int. Conf.

Fuzzy Systems and Knowledge Discovery (FSKD), Xiamen, China, Aug. 2014, pp.

978–982. doi: [10.1109/FSKD.2014.6980965]

License

Copyright (c) 2020 Khaja Kamaluddin

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work

simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that

allows others to share the work with an acknowledgment of the work's authorship and initial

publication in this journal.

http://www.ajpojournals.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

