

Security Policy Enforcement and Behavioral Threat

Detection in DevSecOps Pipelines

Khaja Kamaluddin

European Journal of Technology

ISSN 2520-0712 (online)

Vol.6, Issue 4, pp1 10-30, 2022 www.ajpojournals.org

https://doi.org/10.47672/ejt.2723 10 Kamaluddin (2025)

Security Policy Enforcement and Behavioral Threat Detection in

DevSecOps Pipelines

Khaja Kamaluddin
Masters in Sciences, Fairleigh Dickinson University, Teaneck, NJ, USA, Aonsoft

International Inc,1600 Golf Rd, Suite 1270, Rolling Meadows, Illinois, 60008 USA

Article history

Submitted 21.04.2022 Revised Version Received 22.05.2022 Accepted 24.06.2022

Abstract

Purpose: The evolution of DevSecOps

reflects a critical shift from traditional

DevOps by embedding security seamlessly

throughout the software development

lifecycle. This research explores the

convergence of security policy enforcement

with behavioral threat detection within

CI/CD pipelines, focusing on practices and

tools. We discuss the limitations of legacy

DevOps security approaches, including

late-stage vulnerability identification and

insufficient runtime protection, and

highlight the rising need for behavior-based

detection to counter advanced threats and

insider breaches.

Materials and Methods: While static

analysis and Infrastructure-as-Code

scanning are useful strategies for evaluating

security policies, a more comprehensive

approach examines both compliance-

focused tools and behavioral monitoring

techniques.

Findings: Compliance as-code frameworks

define policies that are automatically

checked, yet anomaly detection within

system calls, container events, and source

code changes offers a dynamic perspective

on threats. Previously, integration of these

checks into CI/CD platforms like Jenkins

and GitLab relied on manual security

reviews of alerts and build checkpoints to

demonstrate how security checkpoints and

alerts were managed before the adoption of

AI-driven automation. Through case

studies such as the Solar Winds breach and

practical pipeline examples, we illustrate

how combined policy and behavior-based

controls can enhance threat prevention.

However, we also identify the significant

challenges to solutions, including high false

positive rates and limited cross-layer

correlation capabilities.

Unique Contribution to Theory, Practice

and Policy: Finally, the article looks ahead

to the anticipated future of DevSecOps,

emphasizing machine learning-driven

behavior modelling, unified enforcement

engines, and a zero-trust approach centered

on identity and behavior analytics.

Keywords: DevSecOps (JEL: O33, O32),

Behavioral Detection (JEL: D83, L86),

CI/CD Security (JEL: O33, L86), Jenkins

Pipeline (JEL: L86, O32), Runtime Threat

Monitoring (JEL: D83, L86),

Infrastructure as Code (IaC) (JEL: O33,

L86), Falco (JEL: L86, K24)

http://www.ajpojournals.org/
https://orcid.org/
https://doi.org/10.47672/ejt.2723

European Journal of Technology

ISSN 2520-0712 (online)

Vol.6, Issue 4, pp1 10-30, 2022 www.ajpojournals.org

https://doi.org/10.47672/ejt.2723 11 Kamaluddin (2025)

INTRODUCTION

Modern DevOps pipelines have enabled rapid software delivery by automating development,

testing, and deployment processes. However, this speed has introduced critical security

vulnerabilities, as the same automation that accelerates workflows can propagate insecure code,

misconfigurations, and unvetted dependencies into production. In many early DevOps

implementations, security was often addressed only after deployment, making remediation

reactive, time-constrained, and potentially ineffective [1].

To counter this, the DevSecOps movement promotes embedding security practices throughout

the development lifecycle, a strategy commonly referred to as “shifting left” [2]. This approach

integrates automated security checks such as code analysis, configuration validation, and

access control enforcement directly into CI/CD workflows. It ensures applications are secure

by design rather than relying on post-deployment patching. Tools like SonarQube [6],

Checkov, and Open Policy Agent (OPA) [7] allow teams to enforce static security policies

during early development and build phases, minimizing the risk of insecure releases.

However, policy enforcement alone is no longer sufficient to protect against modern threats.

Traditional static analysis tools are limited to known patterns and predefined rules, which

makes them ineffective against zero-day exploits, insider threats, and behaviorally dynamic

attacks. This has led to the incorporation of behavioral threat detection within DevSecOps

pipelines. By analyzing the real-time behavior of applications and infrastructure, tools such as

Falco and OSSEC provide continuous runtime monitoring to detect anomalies like privilege

misuse, unauthorized access, or suspicious system calls [5].

Figure 1: DevOps vs DevSecOps Security Integration Timeline

Figure 1 illustrates this evolution from DevOps to DevSecOps, showing how security has

gradually shifted from the end of the pipeline to earlier phases such as coding, building, and

testing. Initially, DevOps workflows prioritized speed and functionality, with security

interventions occurring after deployment. As threats evolved, security began moving leftward,

integrated at each stage to form a layered defense model.

This article examines how security policy enforcement and behavioral threat detection two

complementary strategies were implemented in traditional DevSecOps workflows using tools

available up to that time. By focusing on pre-AI and pre-cloud-native orchestration

technologies, the study offers a clear picture of the security landscape before the emergence of

modern intelligent detection systems [3][4]. The findings reinforce the importance of proactive

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.6, Issue 4, pp1 10-30, 2022 www.ajpojournals.org

https://doi.org/10.47672/ejt.2723 12 Kamaluddin (2025)

and continuous security integration to safeguard today’s fast-paced software development

environments.

This article focuses on the following key research objectives related to DevSecOps security:

i. To evaluate tools and techniques for enforcing security policies in DevSecOps pipelines

using solutions such as SonarQube, OPA, and InSpec.

ii. To evaluate the effectiveness of existing behavior-based threat detection methods,

including runtime tools like OSSEC, Auditd, and Falco.

iii. To demonstrate how security enforcement and behavioural detection were integrated into

CI/CD workflows employing traditional DevSecOps and pipeline ideas before any

innovations appeared.

Background and Motivation

The demand for faster, more reliable software delivery has led to the widespread adoption of

DevOps, a methodology that promotes collaboration between development and operations

teams while automating repetitive tasks [8]. DevOps has revolutionized deployment speed,

enabling organizations to push features and updates in hours rather than weeks. However, this

increased velocity has also intensified security challenges. In early DevOps implementations,

speed and agility were prioritized, often at the expense of robust security protocols. As software

systems grew more interconnected and dependent on micro services, APIs, and containerized

infrastructure, the attack surface expanded, making traditional post-deployment security

practices insufficient [9].

This section reflects on the initial shortcomings of security in DevOps workflows and explains

the growing need for integrated controls. Specifically, it motivates the dual inclusion of

behavioral threat detection and policy enforcement within DevSecOps pipelines, ensuring both

proactive rule-based compliance and adaptive monitoring of dynamic runtime threats.

Limitations of Traditional DevOps Security

In its early phases, DevOps focused primarily on automation, scalability, and continuous

delivery. Security, when included at all, was often confined to the final stages of the software

delivery pipeline just before production deployment [10]. This reactive model introduced

several technical limitations that left systems vulnerable:

i. Lack of runtime visibility: Traditional pipelines offered limited insight into how

applications and infrastructure behaved post-deployment. Without monitoring system

calls, process activity, or file access, it was difficult to detect privilege abuse or stealthy

intrusions.

ii. Manual audits were inefficient and error-prone: Security assessments often relied on

human review of configurations, logs, and documentation. These processes were

vulnerable to oversight due to large log volumes, inconsistent formatting, time

constraints, and analyst fatigue, which introduced subjectivity and missed anomalies.

iii. Delayed vulnerability detection: Security issues identified late in the pipeline required

rework or emergency patches, often after the application had already entered production

making the process disruptive and high-risk.

iv. Lack of policy enforcement at key stages: In many pipelines, security policies were not

automatically applied at the commit, build, or deploy stages. This inconsistency meant

that insecure code or configurations could proceed unchecked through the pipeline.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.6, Issue 4, pp1 10-30, 2022 www.ajpojournals.org

https://doi.org/10.47672/ejt.2723 13 Kamaluddin (2025)

v. Isolated security functions: Security teams often operated in silos, disconnected from

development and operations. This lack of integration hindered timely feedback, delayed

remediation, and reduced overall pipeline transparency.

These limitations underscored the need for DevSecOps, a model where security is embedded

throughout the software lifecycle and enhanced with both preventive (policy enforcement) and

detective (behavioural analysis) controls.

Emerging Threat Landscape

Organisations witnessed a sharp increase in cyberattacks targeting the software delivery

process. Key developments included:

i. Software Supply Chain Attacks: The SolarWinds attack illustrated that cyber thieves

could exploit code and automated pipelines used by other organisations [11].

ii. Insider Threats: Developers or administrators who have special access may slip past

security controls either accidentally or by purpose.

iii. Zero-Day exploit: The use of open-source elements in projects became a major risk for

encountering unusual vulnerabilities.

iv. Container Exploit and Misconfiguration: They introduced additional risks when a large

number of Docker and Kubernetes were used.

These evolving threats required more than just traditional vulnerability scanning; they

demanded active monitoring of system behaviour to detect subtle indicators of compromise.

The Need for Behaviour-Based Detection

As attacks became more evasive and context-aware, security teams turned to behavior-based

detection to spot subtle indicators of compromise that static scanners might miss [12]. Instead

of simply verifying configurations or dependencies, these tools actively monitor how systems

behave in real-time to flag unusual activity such as:

i. Execution of unauthorized processes or binaries

ii. Unexpected privilege escalation attempts

iii. Modifications to sensitive files during CI/CD runs

iv. Unscheduled outbound network access, lateral movement, or port scanning during or after

deployment

Thanks to these technologies, both well-known and unexpected attacks could be found even

during CI/CD pipeline execution. If used along with Open Policy Agent (OPA) and InSpec,

these tools helped achieve both full compliance and current threat awareness. Comparison of

security focus of DevSecOps and DevOps is given in Table 1 below.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.6, Issue 4, pp1 10-30, 2022 www.ajpojournals.org

https://doi.org/10.47672/ejt.2723 14 Kamaluddin (2025)

Table 1: Comparison of Traditional DevOps vs DevSecOps Security Focus

Feature Traditional DevOps DevSecOps

Security Integration

Point

Post-deployment Throughout CI/CD stages

Security Tools Used Manual audits,

scanners

Automated SAST, DAST, OPA, InSpec

Threat Detection

Approach

Signature-based Behavioral and anomaly-based

Focus Speed and delivery Security, compliance, and delivery

balance

Response Time Delayed (after release) Real-time or near real-time

Human Involvement High (manual checks) Low to moderate (automated

enforcement)

Risk Mitigation

Strategy

Reactive Proactive and layered

Policy Enforcement Ad hoc or manual Continuous and codified

Security Policy Enforcement in Devsecops

By using security policy enforcement, DevSecOps pipelines ensure security practices are

always applied to every step in software development [13]. The main idea of DevSecOps was

to create security guidelines and apply them in CI/CD and IaC tools. Following this approach

reduced mistakes made by staff, improved compliance and found possible threats at the

beginning of development.

Defining Security Policies

Security policies show the restrictions a system must have in place for proper confidentiality,

integrity and availability. Policies in this area are normally put into the following categories:

i. Authentication & Authorization: Verifying who users are and giving them rightful

access to code, workspace and deployment processes.

ii. Compliance: It means guaranteeing that applications and systems follow industry

regulations including HIPAA, GDPR or FedRAMP.

iii. Secure Coding: Setting specified coding rules, checking code with static analysis and

confirming the safety of outside libraries used by the code.

These policies were grounded in widely recognised frameworks and benchmarks:

i. OWASP Top 10 (2017): Provided guidelines on the most critical security risks for web

applications.

ii. NIST SP 800-53: Offered comprehensive security and privacy controls for federal

systems.

iii. CIS Benchmarks: Defined secure configuration practices for operating systems,

applications, and cloud platforms.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.6, Issue 4, pp1 10-30, 2022 www.ajpojournals.org

https://doi.org/10.47672/ejt.2723 15 Kamaluddin (2025)

Table 2: Common Security Policies and Mapping to Compliance Frameworks

Security Policy OWASP Top 10 (2017) NIST SP 800-53 CIS Benchmarks

Input validation and

sanitization

A1: Injection SI-10, SC-28 Web server input

validation

Secure authentication

(e.g., MFA)

A2: Broken

Authentication

IA-2, IA-5 OS & Identity

service configs

Secure password

storage

A2, A5 IA-5 (1), SC-12 Password policy

enforcement

Least privilege

access control

A5: Broken Access

Control

AC-6, AC-17 User access control

benchmarks

Secure configuration

of services

A6: Security

Misconfigurations

CM-2, CM-6 Docker/K8s/OS

hardening

Dependency and

library scanning

A9: Using Components SI-2, SA-11 Package manager

checks

Logging and

monitoring

A10: Insufficient

Logging

AU-2 to AU-6 Log service

configuration

Policy Enforcement Techniques

Policy enforcement relies on automated tools and techniques integrated into the software

delivery pipeline. These techniques can be grouped into three major categories:

i. Static Application Security Testing (SAST): Tools like SonarQube, Checkmarx, and

Fortify analyse source code and binaries without executing them [14]. They detect

vulnerabilities such as SQL injection, buffer overflows, and improper error handling.

SAST tools were typically embedded into build stages to prevent insecure code from

being merged.

ii. Infrastructure-as-Code (IaC) Scanning: With the rise of declarative infrastructure

tools like Terraform and Kubernetes [15], security enforcement shifted left into

infrastructure definitions:

Checkov and Conftest scanned Terraform and Kubernetes manifests.

Terraform Sentinel and OPA (Open Policy Agent) enforced custom policies at provisioning

time.

Enforcement Points in CI/CD: Security Policies were Enforced Via

i. Git Hooks: Preventing insecure code from being committed to repositories.

ii. Jenkins or GitLab CI/CD Gates: Conditional pipeline stages that fail if security tests

do not pass.

iii. Kubernetes Admission Controllers: Rejecting unsafe deployments at runtime using

OPA or Kyverno.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.6, Issue 4, pp1 10-30, 2022 www.ajpojournals.org

https://doi.org/10.47672/ejt.2723 16 Kamaluddin (2025)

Figure 2: Typical Policy Enforcement in a Jenkins CI/CD Pipeline

Compliance-as-Code

Compliance-as-Code (CaC) allows organisations to automate regulatory and internal policy

compliance using code, enabling version control, peer review, and continuous testing [16]. This

approach ensures repeatable and auditable enforcement across development environments.

Key tools for CaC included are:

i. InSpec: Developed by Chef, InSpec allows writing human-readable security and

compliance tests.

ii. Sentinel: HashiCorp's policy-as-code framework for Terraform, Nomad, and Vault.

iii. OPA: A general-purpose policy engine used with Kubernetes, Envoy, and Terraform.

These tools were embedded into CI/CD pipelines to validate infrastructure compliance before

deployment.

Table 3: Tools for Policy-as-Code Enforcement with DevSecOps Integration

Tool Functionality CI/CD Integration

Point

InSpec Compliance testing for OS, containers, cloud

infrastructure

Test/Deploy stage

Terraform

Sentinel

IaC policy enforcement for provisioning Terraform apply/plans

OPA Generic policy engine for Kubernetes, CI/CD,

APIs

Admission control,

build/test

Conftest Policy checks for Kubernetes, Terraform, and

Dockerfiles

Git hooks, build stage

Before the emergence of AI-driven tools, DevSecOps teams enforced security by embedding

policy checks at every CI/CD phase. Using open-source tools to set up these rules made

DevSecOps pipelines effective, repeatable and secure.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.6, Issue 4, pp1 10-30, 2022 www.ajpojournals.org

https://doi.org/10.47672/ejt.2723 17 Kamaluddin (2025)

Afterward, we will discuss how adding behavioural threat detection to the pipeline helped it

deal with shift in threats and enforced protection at run time, instead of only identifying static

threats.

Behavioral Threat Detection in Devsecops

Concept and Importance

DevSecOps behavioral threat detection expands upon traditional security approaches by

identifying suspicious patterns in system, application, or user activity, rather than relying solely

on known attack signatures. Traditional signature-based detection works by comparing

incoming data (e.g., files or network packets) against a predefined list of known malicious code

or behavior patterns [17]. While effective for identifying previously catalogued malware, this

method struggles to detect new, evolving, or obfuscated threats. Its dependency on frequently

updated signature databases also introduces delays and blind spots.

In contrast, behavioral detection analyzes runtime activity to spot anomalies that deviate from

established norms. Instead of requiring a known malware signature, it flags suspicious events

such as unusual system calls, unexpected file modifications, strange outbound connections, or

privilege escalations even if the underlying code is previously unseen. This makes it

particularly effective against zero-day exploits, file less malware, polymorphic threats, and

complex multi-stage attacks like Advanced Persistent Threats (APTs).

As modern attack techniques increasingly bypass static defenses, behavioral detection serves

as an adaptive, context-aware layer that complements policy enforcement. It focuses on

dynamic system behavior, enabling the detection of subtle intrusions that evade traditional

rules-based methods.

Advantages of Behavioral Detection in Modern Threat Landscapes

i. Zero-day and Unknown Threat Detection: Can detect previously unseen threats by

monitoring anomalous behaviour.

ii. Reduced Dependence on Updates: Less reliant on signature databases that require

constant updating.

iii. Contextual Analysis: Behavioural systems consider the context of activities, reducing

false positives caused by benign but rare activities.

iv. Early Detection: Can identify malicious activity early in its lifecycle before damage or

exfiltration occurs.

v. Adaptability: Effective against polymorphic and fileless malware that mutate or hide to

evade signature-based detection.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.6, Issue 4, pp1 10-30, 2022 www.ajpojournals.org

https://doi.org/10.47672/ejt.2723 18 Kamaluddin (2025)

Figure 3: Signature-Based vs Behavioral Detection Flowchart

Figure 3 presents a side-by-side comparison of detection methods. On the left, signature-based

detection matches incoming data against known threat patterns. On the right, behavioral

detection collects live system events and inspects them for deviations from expected behavior,

allowing the system to identify threats without needing prior knowledge of specific malware.

Host and System-Level Tools

Several open-source and commercial tools have been widely adopted for behavioral threat

detection at the host and system level. These tools primarily monitor system calls, audit logs,

and runtime behavior to detect anomalies and suspicious activities in real time [18]. While they

originated as stand-alone detection systems, modern DevSecOps practices increasingly

incorporate these tools into CI/CD workflows and infrastructure-as-code pipelines to provide

security as part of the development lifecycle.

Auditd

Auditd is a native Linux auditing system that records low-level events such as file accesses,

permission changes, and user authentication attempts. Administrators configure audit rules to

monitor sensitive system activity such as changes to /etc/, execution of privileged commands,

or login attempts. In a DevSecOps pipeline, Auditd is commonly deployed on build servers,

staging environments, or ephemeral test machines via automation tools like Ansible or

Terraform, ensuring consistent audit coverage across dynamic infrastructure. Its logs can be

forwarded to centralized SIEM tools for real-time analysis [19].

OSSEC and Wazuh

OSSEC is a Host-based Intrusion Detection System (HIDS) that analyzes logs, checks file

integrity, and detects rootkits in real time. Wazuh, its modern fork, extends OSSEC with cloud-

native features such as agent management, Kubernetes monitoring, and scalable dashboards.

Both tools use rule-based and anomaly-based detection techniques. In DevSecOps

environments, OSSEC/Wazuh agents are frequently deployed as part of infrastructure-as-code

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.6, Issue 4, pp1 10-30, 2022 www.ajpojournals.org

https://doi.org/10.47672/ejt.2723 19 Kamaluddin (2025)

templates or baked into base machine images used in pipelines. Their alerts can be integrated

with webhook-based alerting platforms (e.g., Slack, Jira, PagerDuty) to trigger automated

responses within CI/CD stages.

Falco

Falco is a CNCF-hosted, real-time behavioral monitoring tool designed for containerized and

Kubernetes environments, though it also works on traditional hosts. It uses eBPF or syscall

tracing to detect abnormal behavior such as container escapes, privilege escalation, or

unauthorized network activity. Falco is commonly deployed as a Kubernetes DaemonSet in

production and test clusters, providing runtime visibility for every node. DevSecOps teams can

integrate Falco alerts into CI/CD pipelines by using Falco Sidekick, forwarding findings to

tools like Prometheus, Grafana, or incident management systems, enabling automated

enforcement or rollback.

Custom Syslog-Based Alerts and Anomaly Scripts

Many organizations also rely on custom scripts to parse syslog entries, detect anomalous login

attempts, suspicious process executions, or unusual network traffic. These scripts are often

integrated into CI/CD validation stages to flag builds or infrastructure configurations that

deviate from expected behavior. They may also be run as part of post-deployment checks or

scheduled jobs triggered by pipeline orchestration tools like Jenkins, GitLab CI, or Argo CD.

The table 4 typically compares tools like Auditd, OSSEC, Wazuh, Falco, and custom scripts,

mapping their capabilities against monitored elements: system calls, file integrity, process

anomalies, network behavior, and container runtime monitoring.

Developer & Source Code Behavior Monitoring

Although it is important to analyze the actions of hosts, examining what developers do and

their source code is a quickly growing area in DevSecOps behavioral threat detection. Mistakes

from developers using malicious or infected tools can create security risks, so it is important to

detect them fast [20].

Git Commit Anomaly Detection (Manual Rule-Based)

Anomalies in Git commit transitions were detected by workforce members writing their own

rules and heuristics prior to the use of advanced tools. If people are committing code in unusual

ways, the system may ring the alarm. CI techniques often merged these rules into their

pipelines.

Review of Git Audit Trails and Manual Scripting in CI Pipelines

Scouts and DevOps engineers made scripts to check Git logs and analyze commits, referring

them to people’s roles, branch policies and code metrics. Checking manually needs to go hand

in hand with automated checks to find signs of insider threats or breaches in accounts.

While it takes more effort and isn’t very automated, using this approach was an important way

to add threat detection into what developers do every day. It revealed that guaranteeing honest

code and saying who wrote it is key in securing software delivery.

Runtime Behavior Analysis in Containers

Because containers exist only as long as the application runs, they bring new security

challenges. Finding threats related to container breakouts or lateral action within containers

depended on behavioral detection.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.6, Issue 4, pp1 10-30, 2022 www.ajpojournals.org

https://doi.org/10.47672/ejt.2723 20 Kamaluddin (2025)

Falco Rule Sets

Sysdig open source and free of charge. Common principles of Falco were:

i. Detecting shell access in containers (reverse shells or interactive shells).

ii. Alerting on attempts to write to sensitive files or directories outside expected paths.

iii. Monitoring for process spawning patterns indicative of privilege escalation or

breakout attempts.

iv. Detecting network connections initiated from containers to unusual IP addresses or

ports.

These rules were customizable and often integrated with alerting systems to feed security

incident and event management (SIEM) tools.

Container Breakout Detection and Reverse Shell Activity

Containers can be compromised when an attack gets from the container to the host or other

containers; this threat was addressed with behavioral detection. By checking for sudden use of

mounting, modifying namespaces or using privileged binaries, defenders were able to alert the

security team.

Process creations and network behavior were also used to detect when a reverse shell was set

up by an attacker to an external server in real time.

Role of Tools like Sysdig Secure, Twistlock (Legacy), and Aqua Security

Before consolidation in the cloud-native security space, tools like Twistlock (acquired by Palo

Alto Networks) and Aqua Security were prominent commercial solutions offering runtime

behavioral threat detection for containers and Kubernetes. They extended capabilities to

vulnerability scanning, compliance checks, and runtime protection.

Sysdig Secure, building upon the open-source Sysdig and Falco foundation, provided enhanced

monitoring and response capabilities, including integration with Kubernetes audit logs and

cloud-native SIEM solutions.

Figure 4: Sample Falco Detection Flow from Container Runtime to SIEM Alert

Behavioural threat detection has become a foundational element of DevSecOps practices,

complementing traditional signature-based methods by focusing on system and application

behaviours. Tools like Auditd, OSSEC, Wazuh, and Falco established effective frameworks

for host and container-level monitoring. Moreover, integrating developer and source code

behaviour analysis into CI/CD pipelines enhanced early detection of insider or supply chain

threats. Container runtime behaviour analysis, powered by flexible rule sets and tools like Falco

and commercial counterparts, addressed the evolving security challenges posed by ephemeral,

cloud-native environments. As threat actors continue to innovate, behavioural detection’s

adaptive, context-aware nature remains critical to robust security posture in modern

DevSecOps.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.6, Issue 4, pp1 10-30, 2022 www.ajpojournals.org

https://doi.org/10.47672/ejt.2723 21 Kamaluddin (2025)

Table 4: Behavioral Threat Detection Tools and Their Monitoring Capabilities

Tool /

Capability

System

Call

Monitoring

File

Integrity

Monitoring

Process

Anomaly

Detection

Network

Behavior

Monitoring

Container

Runtime

Monitoring

Notes

Auditd Yes Limited

(via rules)

Limited Limited No Native Linux

tool; strong

syscalls audit;

config

intensive

OSSEC Indirect (via

logs)

Yes Yes Yes No HIDS with

log analysis

and file

integrity

Wazuh Indirect (via

logs)

Yes Yes Yes Limited Enhanced

OSSEC with

cloud support

and

scalability

Falco Yes No Yes Yes Yes Real-time

syscall

analysis;

container-

focused

Custom

Syslog

Scripts

Indirect (via

logs)

Varies Varies Varies Varies Highly

customized,

depends on

implementati

on

Integrating Security and Detection in DevSecOps Pipelines

Common CI/CD Tools & Integrations

Using CI/CD tools is now a standard process in many DevSecOps pipelines for automating the

release of software. Security improvements were possible thanks to native plug-ins and custom

scripting used by Jenkins, GitLab CI/CD and CircleCI [21].

i. Jenkins enabled security checks through plugins such as OWASP Dependency-Check,

Checkmarx, and SonarQube, typically embedded into pipeline stages via Groovy or

pipeline DSL.

ii. GitLab CI/CD offered YAML-based configuration (.gitlab-ci.yml) that allowed tight

integration of SAST, container scanning, and license compliance jobs.

iii. CircleCI provided orb-based extensions for integrating tools like Snyk and Aqua Security.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.6, Issue 4, pp1 10-30, 2022 www.ajpojournals.org

https://doi.org/10.47672/ejt.2723 22 Kamaluddin (2025)

DevSecOps pipelines are now commonly built with the help of lightweight GitHub Actions.

YAML scripts were used to configure the security workflows which responded to actions

including push, pull request or a deployment. Possible actions are using linters, static analysis

programs or image vulnerability checks during the early stages of the pipeline.

Stages for Security Checkpoints

To effectively detect and mitigate risks, security controls were inserted at various points in the

pipeline. The following illustrates typical checkpoints based on DevSecOps implementations:

1. Pre-Commit Stage:

i. Static Application Security Testing (SAST): Code was scanned for

vulnerabilities by SonarQube, Bandit (for Python) and ESLint (JavaScript) before

it could be pushed.

ii. Infrastructure as Code (IaC) Scanning: Infrastructure build scripts were checked

with Checkov or tfsec: the selected tools examined Terraform, Kubernetes YAML

and Ansible playbooks.

2. Build/Test Stage:

i. Dependency Scanning: CVE data was obtained for my code’s dependencies and

packages by using OWASP Dependency-Check and Snyk, among others.

ii. Policy Enforcement: Organizational policies were followed and implemented

thanks to OPA (Open Policy Agent) plus internal scripts.

3. Deployment Stage:

i. Runtime Hardening: Before releasing the image, executables were signed,

container privileges were reduced and AppArmor/SELinux enforcement was used.

ii. Gate Checks: Deployments were held back using either policies or manually

approved based on what the scans or reports found.

Table 5: Security Checkpoints in CI/CD Pipeline

Stage Checkpoint Type Example Tools

Pre-Commit SAST, IaC Scanning SonarQube, Checkov, Bandit

Build/Test Dependency Scanning, Policy

Checks

Snyk, OWASP DC, OPA

Deploy Runtime Hardening, Gate

Enforcement

Falco, Notary, Open Policy Agent

Log Management and Alerting

Security logging and monitoring was an essential component of DevSecOps detection

workflows. Practices emphasized self-managed solutions with manual rule correlation:

i. The ELK Stack (Elasticsearch, Logstash, Kibana) was widely adopted for centralized

logging. Applications and pipeline tools forwarded logs to Logstash, where custom

parsing and filtering prepared data for visualization in Kibana.

ii. Graylog provided an alternative log aggregation platform with a simpler UI and plugin

architecture. It supported pipeline logs, container events, and security audit logs.

iii. Manual correlation rules, such as matching repeated failed builds with suspicious Git

activity, were common due to the lack of mature machine learning-based detection.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.6, Issue 4, pp1 10-30, 2022 www.ajpojournals.org

https://doi.org/10.47672/ejt.2723 23 Kamaluddin (2025)

Working together, teams used SIEM systems such as Splunk or Wazuh to connect to their logs

through specially created connectors. Yet, analysts could spot unusual actions, guidance

breaches and unauthorized insider risks, as the automation offered by neighbors was still not

as powerful.

Devsecops Breach Prevention and Behavioral Detection

Devsecops Breach Prevention: Lessons from the Solarwinds Attack

To understand why traditional DevOps pipelines could not detect unusual activities in the

SolarWinds breach in late 2020, we look at that case as a prime example. If behavioural

detection had been used, early signs might have been seen by the system [22].

i. Alterations in the code and hidden logic included in the build

The injected backdoor code did not align with standard coding or version control

behavior. Behavioral baselines for commit frequency, contributor activity, and file access

patterns could have flagged these anomalies.

ii. Transmission to external parties

The malware’s outbound communications to attacker-controlled servers were abnormal

for build or deployment environments. Behavioural monitoring of expected network

activity would have identified these unauthorized connections.

iii. Sudden shifts in build frequency or number of deliverables

A spike in the number of builds or unexpected changes in deliverable outputs may signal

compromised automation. Deviations from the usual build cadence could have been

detected through pipeline behavior baselining.

iv. Unexpected execution of administrative tools

Tools such as PowerShell or credential scripts executed during builds are atypical in

normal CI/CD workflows. Behavioural profiling of runtime activity on build agents could

have flagged such unauthorized tool usage.

These deviations are difficult to detect with signature-based tools alone. However, if behavioral

logging and monitoring were applied consistently during both code commits and runtime

execution, such activity could have been flagged early. Logging sensitive script changes and

tracking anomalous actions across build environments allows organizations to detect

sophisticated supply chain threats before full impact occurs.

Jenkins Pipeline Security Integration: Behavior & Policy Triggers

Jenkins-based DevSecOps pipelines now incorporate both static and behavioral security

controls to protect applications throughout the CI/CD lifecycle. In the early stage, tools like

Checkov and Conftest scan Infrastructure as Code (IaC) files such as Terraform or Kubernetes

manifests to detect misconfigurations and enforce policy compliance. These scans occur before

code is merged, helping teams prevent insecure configurations from reaching later stages. The

results can be automatically converted into structured reports for security teams to review.

During the build and deployment phase, Docker is used to containerize applications, simulating

production conditions. At this stage, runtime security becomes essential.

To detect suspicious behavior during container execution, Falco is integrated into the final

pipeline stage. Running alongside live containers, Falco monitors system calls in real time,

identifying threats like unauthorized shell access, unexpected file changes, or abnormal

network activity. After a short observation period, containers are shut down, and Falco logs are

stored for review.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.6, Issue 4, pp1 10-30, 2022 www.ajpojournals.org

https://doi.org/10.47672/ejt.2723 24 Kamaluddin (2025)

Together, Checkov and Conftest enforce static security early, while Falco delivers runtime

visibility. This layered approach ensures vulnerabilities are addressed at multiple stages—

making the Jenkins pipeline both secure by design and resilient to runtime threats.

Figure 5: Jenkins DevSecOps Pipeline with Security and Behavioral Triggers

Detecting Behavioral Anomalies in CI Environments

One noticeable behavioural anomaly seen in CI/CD pipelines is when an unauthorised shell

belonging to a CI agent like Jenkins or GitLab Runner obtains access to a container. The access

can happen when someone steals the builders’ credentials or if malicious code is put into the

build process.

Typically, secure pipelines handle workflow steps differently from the usual order. This

behaviour can be detected by Falco, which sets off an alert when a shell process is run inside a

container it doesn’t expect one. The tools set up baseline behaviour and identify events that

move beyond this standard.

Early on, leading DevSecOps teams monitoring app and system behaviour using Falco or

AppArmor were able to track activities and find anomalies in close to real time, helping to

improve security throughout DevSecOps practices.

Limitations of Methods

Even though DevSecOps pipelines offered good security options such as static analysis, rule-

based detection and log aggregation, they still faced certain issues. There was greater risk to

how threats were detected, the ability to react and the total stability of the company’s security

operations.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.6, Issue 4, pp1 10-30, 2022 www.ajpojournals.org

https://doi.org/10.47672/ejt.2723 25 Kamaluddin (2025)

Absence of ML/AI for Behavior Profiling

Tools from this era did not employ machine learning (ML) or artificial intelligence (AI) to

model and understand normal system behavior over time. Without such behavioral baselining,

distinguishing between legitimate and malicious activity required manual investigation. This

limited the ability of detection systems to identify novel or subtle threats (e.g., insider threats,

slow-moving exfiltration), which were not covered by predefined rules.

Fragmented Toolchain with Poor Cross-Layer Correlation

DevSecOps pipelines often spanned multiple tools for code, build, and runtime stages.

However, most tools operated in isolation and lacked integration standards. This made it

difficult to correlate a security issue in runtime with its origin in source code or infrastructure

configuration. For example, a vulnerability discovered during runtime might not be easily

traceable back to a particular Git commit, developer, or IaC misconfiguration limiting root

cause analysis.

Weak Integration between Behavior Logs and Policy Engines

Although behavior detection tools like Falco generated useful logs, these were rarely integrated

with policy engines like OPA (Open Policy Agent) or Conftest in real time. As a result,

enforcement of security policies remained largely static and reactive. There was no mechanism

to dynamically adjust policies based on detected behavioral trends or emerging anomalies.

Table 6: Gaps in DevSecOps Security Toolchains

Limitation Description

High False Positives Static rules triggered alerts on rare but legitimate actions

No Behavioral Modeling Lack of ML/AI led to blind spots in anomaly detection

Toolchain Fragmentation Poor visibility across CI, build, deploy, and runtime phases

Disconnected Logs &

Policies

Runtime logs not linked to enforcement mechanisms or

access controls

Lack of Real-Time

Correlation

Security events across layers weren’t contextualized or

correlated

Future Outlook

Security experts and DevSecOps practitioners were envisioning a future pipeline model that

would overcome the limitations of rule-based, fragmented systems. The emphasis shifted

toward intelligent automation, unified observability, and identity-driven security. Several

trends were anticipated to transform DevSecOps practices into proactive, adaptive frameworks.

ML-Based Behavior Modeling for Developer and System Patterns

The future of threat detection was expected to be driven by machine learning (ML), enabling

pipelines to learn from normal developer behavior and system operations. By analyzing coding

habits, commit frequency, build dependencies, and runtime behavior, ML algorithms could

establish baselines and detect subtle anomalies. This evolution aimed to reduce false positives

and enable early detection of insider threats, compromised credentials, or supply chain attacks.

It includes:

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.6, Issue 4, pp1 10-30, 2022 www.ajpojournals.org

https://doi.org/10.47672/ejt.2723 26 Kamaluddin (2025)

i. Learning typical Docker image changes or IaC edits by a given developer

ii. Alerting on deviation from established deployment sequences

iii. Detecting unauthorized CI agent access based on historical command patterns

Unified Policy + Behavior Engines

A key limitation of early toolchains was the disconnect between policy definition (e.g., OPA

rules) and behaviour detection (e.g., Falco logs). The future vision included unified engines

that could evaluate both real-time behaviour and declarative policy within the same logic layer.

These systems would respond dynamically updating policies or enforcement criteria as

behavioural anomalies emerged, effectively closing the feedback loop between detection and

prevention.

Such engines could:

i. Trigger policy enforcement based on live behavioral context

ii. Modify access privileges or enforce rate limits on suspicious activity

iii. Integrate runtime intelligence into CI gatekeeping mechanisms

Real-Time Zero Trust Enforcement

ZTA is expected to become the core principle of future security architecture. In a modern

DevSecOps pipeline, this means that every person or service must be continuously verified and

authorized in real time, based on identity and contextual attributes. Access decisions no longer

depend on the network perimeter, but instead on factors like user behavior, device state, and

live threat intelligence.

Expected capabilities:

i. Real-time policy enforcement at commit, build, and deploy phases

ii. Automated revocation of tokens or privileges upon behavioral anomaly

iii. Integration with cloud-native security frameworks (e.g., Istio, SPIFFE)

● SPIFFE assigns dynamic, short-lived identities to workloads, allowing context-

aware authentication between services.

● Istio enforces runtime policies and secures service-to-service communication using

mutual TLS, traffic policies, and access control layers.

While these predictions point toward a dynamic, self-defending pipeline, real-world

implementation remains challenging. AI-based behavioral analysis depends on high-quality,

labeled training data which may be scarce or biased in live DevSecOps environments.

Likewise, deploying identity-aware controls like SPIFFE and Istio at scale can incur significant

infrastructure overhead, configuration complexity, and require organizational maturity in

DevOps practices. Bridging the gap between ideal and practical ZTA adoption demands

thoughtful integration planning, strong data governance, and robust resource allocation.

Shift from Perimeter to Identity & Behavior-Based Controls

Traditional perimeter tools were becoming less useful with the rise of microservices, temporary

containers and work done remotely. The future approach aims to guide control models based

on identity and behavior. Security would mirror how much work the code handles, protecting

it equally whether on-premises, in the cloud or in a mixture of both.

Strategic shifts included:

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.6, Issue 4, pp1 10-30, 2022 www.ajpojournals.org

https://doi.org/10.47672/ejt.2723 27 Kamaluddin (2025)

i. Fine-grained access control based on developer roles and behavior

ii. Continuous verification of workloads and agents

iii. Decentralized policy distribution aligned with GitOps principles

This vision marked a shift from reactive security to a proactive, adaptive DevSecOps pipeline

that learns, enforces, and evolves with real-time intelligence.

CONCLUSION AND RECOMMENDATIONS

Conclusion

The article has highlighted the importance of adding policy enforcement and threat detection

to CI/CD pipelines as the security practices in DevSecOps grow. It was the increasing difficulty

in software supply chains and new kinds of serious threats, like attacks from within a company

and runtime attacks that encouraged the move from traditional DevOps to DevSecOps. With

static application security testing (SAST), infrastructure code scans, compliance-as-code and

Falco and OSSEC behaviour monitoring, we were able to detect and mitigate risks at the

earliest stage.

Nevertheless, these earlier designs depended on fixed rules, which meant they were not good

at low false positives and missed changes in attack patterns. The use of different security tools

at various points in development, build and runtime also made it difficult to see everything

clearly or relate it all together. These holes made it obvious that we needed more coordinated

and smart security approaches.

Despite these limitations, the combination of security policy enforcement with behavior-based

detection marked a crucial advancement in shifting security left and embedding it deeply within

the software lifecycle. The case studies and practical pipeline integrations discussed illustrate

the tangible benefits and feasibility of this approach using technologies.

Moving forward, DevSecOps is set to improve through more automation, smarter features and

machine learning that creates changing behaviour models. The use of one security system and

fast zero trust checks will be necessary to defend today’s complex and dispersed application

environments. Organisations must make security part of the code and keep an eye on

behaviours to remain resilient to severe threats as they speed up software production.

Besides, the results from DevSecOps adoption give useful knowledge for shaping future

security approaches. People in organisations must understand that security requires continual

effort and teamwork from developers, security experts and operations staff. If teams are aware

of security and use advanced detecting and enforcing tools, they will be ready to react to

emerging threats. Eventually, as DevSecOps practices improve, both fast development and

security will work together seamlessly in software.

Recommendation

Based on the findings, it can be stated that a range of strategic suggestions can be made to

improve the safety verification of the security policy and increase the identification of

behavioral threats in DevSecOps pipelines. First, a layered security is necessary since it

involves the usage of both static and dynamic analysis tools (sonarqube + OWASPZAP and

infrastructure-as-code (IaC) scanning and compliance-as-code enforcement such as open

policy agent (OPA) and inspect. In order to enhance visibility into behaviors, run-time threat

detection mechanisms (e.g., Falco or Sysdig Secure) should be deployed to complement the

use of anomaly detection using machine learning (e.g., Elastic ML, Splunk UBA) to provide

baselines and mitigate false positives. The integration of the tool chain is also to be enhanced

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.6, Issue 4, pp1 10-30, 2022 www.ajpojournals.org

https://doi.org/10.47672/ejt.2723 28 Kamaluddin (2025)

by correlating alerts throughout the code, build, and runtime layers via the SIEM platforms,

such as Wazuh or Splunk, as well as automating the response, such as the termination of

containers, in the case of the detection of malicious activity. In addition to tooling, DevSecOps

culture should be developed, which can be done by introducing shift-left security training

opportunities, threat modeling, and having Security Champions, to fill the gaps in the

organization. Lastly, to support the changing threats, the organizations are also advised to

embrace Zero Trust principles (e.g. SPIFFE/ SPIRE towards workload-identity) and adaptive

security models steered by the Artificial Intelligence to predict and prevent future attacks using

the previous attack behaviour as training data.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.6, Issue 4, pp1 10-30, 2022 www.ajpojournals.org

https://doi.org/10.47672/ejt.2723 29 Kamaluddin (2025)

REFERENCES

[1] R. Manchana, "The DevOps Automation Imperative: Enhancing Software Lifecycle

Efficiency and Collaboration," Eur. J. Adv. Eng. Technol., vol. 8, no. 7, pp. 100–112,

2021.

[2] R. Kumar and R. Goyal, "When security meets velocity: Modeling continuous security for

cloud applications using DevSecOps," in Innovative Data Communication

Technologies and Application: Proc. ICIDCA 2020, Singapore: Springer, 2021.

[3] F. Yashu, M. Saqib, S. Malhotra, D. Mehta, J. Jangid, and S. Dixit, "Thread mitigation in

cloud native application development," Webology, vol. 18, no. 6, pp. 10160–10161,

2021. [Online]. Available: https://www.webology.org/abstract.php?id=5338s

[4] W. Tounsi and H. Rais, "A survey on technical threat intelligence in the age of sophisticated

cyber-attacks," Comput. Secur. vol. 72, pp. 212–233, 2018.

[5] Y. Smeets, "Improving the adoption of dynamic web security vulnerability scanners," M.S.

thesis, Radboud Univ., Nijmegen, Netherlands, 2015.

[6] V. Lenarduzzi et al., "Are sonarqube rules inducing bugs?," in Proc. 27th IEEE Int. Conf.

Softw. Anal., Evol. Reeng. (SANER), 2020, pp. 217–227.

[7] F. Hoces de la Guardia, S. Grant, and E. Miguel, "A framework for open policy analysis,"

Sci. Public Policy, vol. 48, no. 2, pp. 154–163, 2021.

[8] C. A. Cois, J. Yankel, and A. Connell, "Modern DevOps: Optimizing software development

through effective system interactions," in Proc. IEEE Int. Prof. Commun. Conf. (IPCC),

2014, pp. 1–5.

[9] D. H. Ryu, H. Kim, and K. Um, "Reducing security vulnerabilities for critical

infrastructure," J. Loss Prev. Process Ind., vol. 22, no. 6, pp. 1020–1024, 2009.

[10] J. Hamunen, "Challenges in adopting a Devops approach to software development and

operations," M.S. thesis, 2016.

[11] W. J. Heinbockel, E. R. Laderman, and G. J. Serrao, "Supply chain attacks and resiliency

mitigations," The MITRE Corporation, 2017, pp. 1–30.

[12] H. S. Galal, Y. B. Mahdy, and M. A. Atiea, "Behavior-based features model for malware

detection," J. Comput. Virol. Hacking Tech., vol. 12, pp. 59–67, 2016.

[13] P. Bitra and C. S. Achanta, "Development and Evaluation of an Artefact Model to Support

Security Compliance for DevSecOps," 2021.

[14] J. Yang et al., "Towards better utilizing static application security testing," in Proc. 2019

IEEE/ACM 41st Int. Conf. Softw. Eng.: Softw. Eng. Pract. (ICSE-SEIP), 2019, pp.

525–534.

[15] S. Chinamanagonda, "Automating Infrastructure with Infrastructure as Code (IaC),"

SSRN, 2019. [Online]. Available: https://ssrn.com/abstract=4986767

[16] S. R. Gopireddy, "Automated Compliance as Code for Multi-Jurisdictional Cloud

Deployments," Eur. J. Adv. Eng. Technol., vol. 7, no. 11, pp. 104–108, 2020.

[17] A. Bahaa et al., "Monitoring real time security attacks for IoT systems using DevSecOps:

a systematic literature review," Information, vol. 12, no. 4, p. 154, 2021.

[18] P. Cui, DevSecOps of Containerization, Ph.D. dissertation, Auburn Univ., 2020.

http://www.ajpojournals.org/

European Journal of Technology

ISSN 2520-0712 (online)

Vol.6, Issue 4, pp1 10-30, 2022 www.ajpojournals.org

https://doi.org/10.47672/ejt.2723 30 Kamaluddin (2025)

[19] B. A. Kuperman and E. H. Spafford, "Audlib: a configurable, high‐fidelity application

audit mechanism, Softw” Pract. Exp., vol. 40, no. 11, pp. 989–1005, 2010.

[20] J. Diaz et al., "Self-service cybersecurity monitoring as enabler for DevSecOps," IEEE

Access, vol. 7, pp. 100283–100295, 2019.

[21] B. Jammeh, "DevSecOps: Security expertise a key to automated testing in CI/CD

pipeline," M.S. thesis, Bournemouth Univ., 2020.

[22] J. Martínez and J. M. Durán, "Software supply chain attacks, a threat to global

cybersecurity: SolarWinds’ case study," Int. J. Safety Secur. Eng., vol. 11, no. 5, pp.

537–545, 2021.

License

Copyright (c) 2022 Khaja Kamaluddin

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work

simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that

allows others to share the work with an acknowledgment of the work's authorship and initial

publication in this journal.

http://www.ajpojournals.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

