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Abstract 

Purpose: This research aims to construct 

predictive models for estimating the long-

term fate of molars in patients with 

periodontitis condition.  

Materials and Methods: A stacked 

ensemble model is developed that 

demonstrates superior accuracy compared 

to several other machine learning 

algorithms, including Logistic Regression, 

Support Vector Machines, Decision Trees, 

K-Nearest Neighbors, Random Forests, 

Deep Neural Networks, Gradient Boosting, 

and Naive Bayes.  

Findings: The main outcome is the 

accurate prediction of molar extraction 

following active periodontal therapy. The 

combined model incorporating multi-layer 

neural networks and logistic regression 

demonstrates superior area under the curve 

(AUC = 0.776) for total molar loss. For 

molar loss attributed specifically to 

periodontal disease, the deep neural 

network alone yields the highest AUC 

(0.774). The ensemble model also achieves 

the highest accuracy.  

Unique Contribution to Theory, Practice 

and Policy: By utilizing dental patients 

history data from the USA, this study 

successfully develops and validates 

machine learning models for predicting 

molar tooth loss. The combined model 

offered the most consistent and accurate 

results and is available for use in clinical 

settings to assist with decision-making in 

periodontics. 

Keywords: Molar Loss, Machine 
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INTRODUCTION 

Molar loss, the premature or eventual loss of permanent molar teeth, presents significant oral 

health challenges with both functional and systemic consequences. Molars play a crucial role 

in mastication (chewing), maintaining vertical facial dimension, and supporting proper 

alignment of adjacent and opposing teeth. Their loss can lead to difficulty in chewing and 

grinding food efficiently, which can compromise nutrition and digestion; shifting of adjacent 

teeth and supra-eruption of opposing teeth, leading to malocclusion, temporomandibular joint 

(TMJ) disorders, and bite imbalance. Their loss can also affect facial structure over time and 

negatively influence self-esteem, particularly when multiple molars are lost. Emerging 

evidence suggests a correlation between tooth loss (including molars) and systemic conditions 

such as cardiovascular disease, diabetes, and cognitive decline, possibly due to chronic 

inflammation or reduced masticatory function. Replacing molars often requires complex 

procedures such as dental implants, fixed bridges, or removable prosthetics, which can be 

invasive, expensive, and require long-term maintenance. Early detection and prevention 

strategies such as routine dental care, management of periodontal disease, and education on 

oral hygiene are key to reducing the burden of molar loss and preserving long-term oral and 

systemic health. 

Prognostic prediction involves estimating the likely progression and ultimate outcome of a 

disease, particularly with regard to recovery potential. In dentistry, the ability to predict the 

future stability or loss of teeth especially molars plays a critical role in formulating treatment 

plans and guiding clinical decisions. Accurate forecasts can not only help reduce overall 

treatment expenditures but also promote more effective and conservative therapeutic 

interventions (Schwendicke et al., 2017). 

Machine learning (ML), known for its capacity to identify and model complex patterns in data, 

has gained widespread application across many fields, including periodontology (Sidey-

Gibbons & Sidey-Gibbons, 2019; Harrison & Sidey-Gibbons, 2021; Mohammad-Rahimi et al., 

2022). In periodontics, predictive modeling has introduced new possibilities for delivering 

tailored treatments a fundamental goal of personalized medicine. By enabling clinicians to 

adapt interventions to the unique clinical context of each patient, these tools have the potential 

to improve treatment success and reduce the likelihood of tooth loss in the future. 

Typically, prognostic models in periodontics can incorporate a range of variables at both the 

patient and tooth levels. Patient-related features include age, smoking behavior, diabetic status, 

and the classification of periodontitis based on staging and grading systems (Schwendicke et 

al., 2018; Ravida et al., 2020; Saleh et al., 2022). On the other hand, tooth-level indicators often 

encompass metrics such as probing pocket depth, clinical attachment level (CAL), and the 

extent of furcation involvement (Shi et al., 2020; Saleh et al., 2021). 

Several factors influence the development and reliability of such models. These include the 

choice of modeling technique (e.g., Random Forests versus XG Boost), the size of the dataset, 

the distribution of outcome classes (as most teeth are preserved, resulting in class imbalance), 

and the time span of prediction (ranging from short to long term) (Krois et al., 2019). 

Another essential consideration is the method used for validating the model. Validation can be 

either internal or external. Internal validation refers to performance testing using the same 

dataset that the model was trained on. The internal validation may lead to overly optimistic 

results because the model may be finely tuned to the specific characteristics of a single 

population, which can limit its applicability elsewhere. External validation, in contrast, tests 

the model on the validation dataset and is a stronger indicator of generalizability. 
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Unfortunately, the current literature primarily focuses on internal validation and ignores 

external validation, limiting their robustness and clinical relevance (Du et al., 2018). 

ML algorithms utilize advanced computing capabilities to uncover complex relationships 

within large datasets (Bates et al., 2014). These methods can be tailored to particular 

populations and have been used successfully for tasks such as risk stratification, disease 

classification, and survival analysis (Kantarjian & Yu, 2015; Ngiam & Khor, 2019). However, 

it remains unclear whether ML approaches can consistently exceed the predictive accuracy of 

traditional statistical models such as logistic regression in this context (Christodoulou et al., 

2019). 

This study is therefore designed to address that gap. We sought to develop and validate multiple 

machine learning models capable of predicting the 10-year risk of molar loss in patients 

affected by periodontitis. The developed model is capable of providing clinicians with 

dependable, data-driven tools to assist in long-term treatment planning and improve patient 

outcomes. 

MATERIALS AND METHODS 

In this study, the molar tooth was selected as the primary unit of statistical analysis. The main 

outcome of interest was defined as overall molar loss (MLO), which included any extraction 

regardless of cause occurring within a decade following the conclusion of active periodontal 

therapy and the commencement of supportive periodontal care (SPC). This study utilizes 

historical patient data from dental clinics in the USA, which includes 4,254 molar data from 

630 patients. The following baseline variables, recorded at the end of active periodontal 

therapy, were incorporated into the predictive models: 

 Gender 

 Age 

 Dietary habit 

 Smoking history 

 Extent of radiographic bone loss (<15%, 15–33%, ≥33%) 

 Depth of probing pocket 

 Clinical attachment level 

 Tooth mobility 

 Whether the tooth served as a prosthetic abutment 

To standardize outcome measurement, tooth status was evaluated precisely ten years after the 

end of active treatment. While the primary endpoint was MLO (any reason for molar 

extraction), a secondary outcome periodontitis-related molar loss (MLP) was also assessed. For 

maintenance adherence, patients were classified as compliant if they had attended, on average, 

at least one follow-up session per year during the observation window. 

Given the relatively low incidence of MLO and MLP at the 10-year mark, the dataset exhibited 

significant class imbalance. To address this, the synthetic minority oversampling technique 

(SMOTE) was applied to the dataset. To evaluate the contribution of each predictor, feature 

ranking was performed using various techniques including information gain, gain ratio, Gini 

index, ANOVA, chi-square, Relief, principal component analysis (PCA), and fast correlation-

based filter (FCBF). Using these predictors, a variety of machine learning models were trained: 

 Deep neural networks 

 Random forests 
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 Logistic regression 

 Support vector machines (SVM) 

 K-nearest neighbors (KNN) 

 Decision trees 

 Random forests 

 Gradient boosting 

 Naive Bayes classifiers 

Additionally, ensemble learning through stacking was employed to combine individual models 

and enhance predictive accuracy. Performance was evaluated using the area under the receiver 

operating characteristic curve (AUC-ROC), along with sensitivity and specificity. Results were 

generated using Python Scikit-learn and Tensorflow packages. 

FINDINGS 

Out of 4254 data points, 3403 records (80%) were used for training, 425 (10%) records were 

used for testing and 426 (10%) records were used for external validation of the trained models. 

During the model training phase, all algorithms demonstrated promising discriminative 

capabilities, with area under the curve (AUC) values exceeding 0.70. 

 

Performance metrics for each algorithm in internal validation were as follows: 

 Naive Bayes: AUC = 0.969 

 Random Forest: AUC = 0.929 

 Gradient Boosting: AUC = 0.924 

 K-Nearest Neighbors (KNN): AUC = 0.924 
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 Logistic Regression: AUC = 0.787 

 Neural Network: AUC = 0.757 

 Support Vector Machine (SVM): AUC = 0.755 

A combined model integrating logistic regression and neural networks through ensemble 

stacking achieved an AUC of 0.759. Due to the risk of overfitting associated with internal 

validation alone, model performance was further assessed using the validation dataset. 

When tested on the validation dataset, the ensemble model exhibited the strongest 

discriminative performance for overall molar loss (MLO), with an AUC of 0.776. It was closely 

followed by: 

 Neural Network: AUC = 0.774 

 Naive Bayes: AUC = 0.695 

 Logistic Regression: AUC = 0.647 

 SVM: AUC = 0.626 

 Gradient Boosting: AUC = 0.659 

 Random Forest: AUC = 0.590 

 KNN: AUC = 0.569 

The same procedure was applied to assess molar loss exclusively due to periodontitis (MLP). 

For this endpoint, both the neural network and the ensembled model produced an identical 

AUC of 0.702. Other models followed in descending order: 

 Random Forest: AUC = 0.683 

 Naive Bayes: AUC = 0.649 

 Logistic Regression: AUC = 0.611 

 KNN: AUC = 0.565 

 Gradient Boosting: AUC = 0.527 

 SVM: AUC = 0.512 

As demonstrated in the results, both the neural network and the ensembled model demonstrated 

the most consistent performance, with AUC values consistently at or above 0.70. Additional 

performance indicators including model sensitivity and specificity. 

Using machine learning (ML) algorithms for classification tasks is not inherently novel; 

however, its integration into clinical contexts has accelerated recently, fueled by significant 

improvements in data processing capabilities (Deo, 2015). In periodontology, especially, ML 

presents an opportunity to build powerful prediction systems, even though these models must 

contend with a central challenge: the rarity of adverse outcomes such as tooth loss under 

supportive periodontal care (SPC) (Leow et al., 2022). 

Because tooth retention is far more common than loss in these settings, the datasets are heavily 

imbalanced. This means that models trained on such data may appear to perform well often 

showing high overall accuracy or AUC while actually lacking clinical usefulness due to low 

sensitivity. To illustrate this point, consider a hypothetical scenario where a model predicts that 

none of the molars in the study are lost over 10 years. While such a model would correctly 

predict all outcomes (survivals), its sensitivity would be zero, as it would fail to detect any of 
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the actual tooth loss events. This is a well-known issue in periodontology: the minority class 

(lost teeth) is small, leading models to favor the majority class (retained teeth) unless explicitly 

corrected. 

This imbalance explains why many periodontal prediction tools exhibit poor sensitivity despite 

apparently strong AUC scores. To address this, the current study utilized SMOTE (Synthetic 

Minority Oversampling Technique) to rebalance the data during training. The results of this 

study align with broader literature. For example, a recent study by Bashir et al. (2022) applied 

a variety of preprocessing approaches and ML algorithms to create diagnostic models for 

periodontitis. However, these models collapsed in performance when subjected to external 

validation. Bashir and colleagues concluded that meaningful deployment of such models in 

clinical settings should be preceded by training on large datasets, use of reliable predictors, and 

rigorous external validation. 

CONCLUSION AND RECOMMENDATIONS 

Conclusion 

This study successfully developed and externally validated a range of machine learning models 

aimed at predicting the long-term survival of molar teeth in patients with periodontitis. Among 

the various algorithms tested, the ensemble model an integration of neural networks and 

logistic regression consistently demonstrated superior and more stable predictive performance. 

By leveraging a comprehensive dataset representing multiple regions from the USA, we 

showed that intelligent model design and careful data curation can significantly enhance the 

reliability of prognostic tools in periodontology. The ensemble model not only achieved high 

levels of discrimination but also outperformed classical logistic regression, suggesting it may 

be a more robust option for real-world clinical use. 

Importantly, this work addresses a critical gap in the literature by combining methodological 

rigor with global validation, marking the first known attempt to compare and confirm the utility 

of both traditional and ML-based prognostic systems for long-term molar retention. The model 

was constructed using only baseline data, which ensures simplicity in implementation but also 

imposes some limitations namely, the inability to account for dynamic clinical changes such as 

alterations in smoking habits, variations in SPC adherence, or shifts in systemic health over 

time. 

That said, baseline-only prediction is still valuable, especially during the initial treatment 

planning phase. For instance, the prognosis of a molar can differ significantly depending on 

the broader context: in stage I to III periodontitis, a tooth with questionable status might still 

be retained if it functions without causing symptoms. In contrast, molars designated to serve as 

prosthetic abutments especially in full-arch rehabilitations for stage IV cases may require 

stricter prognostic criteria due to their critical mechanical role (Pretzl et al., 2008; Eickholz et 

al., 2021). 

Recommendations 

Our findings reinforce the conclusions of other recent studies, including those by Bashir et al. 

(2022), who emphasized that machine learning models can outperform traditional regression 

methods when trained on well-curated, multi-center datasets with strong predictor variables. 

The present study supports this claim by adding empirical evidence. As we move forward, it 

will be increasingly important to encourage data sharing and to perform direct head-to-head 

comparisons between ML-based and conventional prognostic models (Saleh et al., 2021, 2022; 

Saydzai et al., 2022). 
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