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Abstract 

Purpose: Containerized environments 

have become foundational to modern 

software development due to their 

portability, scalability, and efficient 

resource utilization. However, their shared-

kernel architecture introduces distinct 

security challenges, particularly in malware 

detection. This study presents a historical 

analysis of fine-grained, behavior-based 

malware detection techniques within 

containerized systems.  

Materials and Methods: We examine 

early machine learning approaches, 

including Decision Trees, Hidden Markov 

Models, and LSTM networks trained with 

limited datasets alongside system call 

tracing and process behavior profiling.  

Findings: While these techniques are now 

outdated, they marked critical early steps 

beyond static and signature-based detection 

in dynamic, containerized infrastructures. 

We analyse behavioural features such as 

syscall sequences, memory anomalies, and 

DNS irregularities, assessing their 

detection performance and limitations in 

orchestrated environments. The paper 

further contextualizes these legacy methods 

in light of modern advancements, including 

eBPF-based monitoring and context-aware 

deep learning models.  

Unique Contribution to Theory, Practice 

and Policy: Key recommendations include 

leveraging eBPF for efficient runtime 

monitoring, incorporating orchestration 

metadata for context-aware detection, and 

enabling cross-container correlation for 

identifying lateral movement. This 

retrospective establishes a comparative 

framework that informs the development of 

adaptive, real-time security solutions, such 

as graph neural networks and behavioural 

baselining, thereby guiding future research 

in runtime container security. 

Keywords: Container Security (O33); 

Behavioral Malware Detection (D83, 

O33); eBPF Monitoring (C63, C88); 

Kubernetes Security (O33); Runtime 

Threat Detection (C63, O33); Cloud-

Native Security (O33, L86); Anomaly 

Detection (C63, D83); Historical Security 

Analysis (D83, H56). 
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INTRODUCTION 

The rise of container technologies such as Docker, LXC and Kubernetes has dramatically 

transformed the way modern applications are developed, deployed, and scaled [1]. Containers 

offer a lightweight, efficient, and portable solution, enabling applications to run consistently 

across diverse environments. Containers streamline deployment, improve scalability and 

maximise resource utilisation by encapsulating an application and its dependencies into a single 

unit. Containerization has consequently emerged as a crucial element of contemporary software 

development and operations, especially in cloud-native settings [2]. 

However, due to an increased popularity of containers, unique issues regarding security have 

arisen. At the beginning of the life cycle of the container technologies, issues were raised about 

the isolation between containers and the containers’ host operating systems [3]. Although 

containers create some isolation, they compete for the same underling host services, exposing 

them to attacks like container escapes, privilege escalation, and resource contention. The new 

menaces that surrounded potent containerized systems were not amply handled by the 

traditional security mechanisms such as the host-based firewalls, intrusion detection systems 

(IDS), which were originally designed for virtual or physical settings. Container runtimes 

misconfigurations and issues further worsen these problems, indicating a need for specific 

security solutions for the container model [4]. 

The figure 1 represents the development of malware detections technologies with a specific 

focus on traditional to behavior-based changes. This timeline emphasizes the increased need 

for dynamic behavior-driven defenses, as the containerized environments started dominating 

the landscape and becoming increasingly advanced. 

Moreover, a comparison of threat surfaces between traditional VM’s and containerized 

landscape is presented in the table 1, in order to point out unique security aspects concerning 

containerized environments. This comparison demonstrates how the container technologies 

add new risks and complexities hence requiring addressing of old security paradigms. 
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Table 1: Comparison of Threat Surfaces Between Traditional Virtual Machines (VMs) 

and Containerized Environments 

Aspect Traditional Virtual 

Machines (VMs) 

Containerized Environments 

Isolation Strong isolation with separate 

kernels and virtualized 

resources. 

Weaker isolation, as containers share the 

same kernel. 

Resource 

Sharing 

Fully isolated resources (CPU, 

memory, disk). 

Shared resources at the host OS level, 

increasing risks. 

Security 

Boundaries 

Clear separation between VMs 

and the hypervisor. 

Shared kernel increases attack surface. 

Attack Surface Limited to the VM and 

hypervisor. 

Broader attack surface, including 

container runtime and shared host OS. 

Kernel 

Vulnerabilities 

Vulnerabilities affect only the 

specific VM’s kernel. 

Kernel vulnerabilities impact all 

containers on the same host. 

Performance 

Overhead 

Higher overhead due to 

hardware virtualization. 

Lower overhead, as containers run as 

processes on the host OS. 

Behavior-based malware detection methods have become increasingly popular in response to 

these security flaws [5]. Based on behavior detection, behavior-based detection relies on 

monitoring system activities and identifying anomalies deviating from the norms as opposed 

to the former signature-based detection systems that focus on established patterns of malicious 

activity. Signature-based methods are good for known threats but are not so good at detecting 

original or innovative threats especially those that are designed to avoid detection systems. 

However, behavior-based approaches provide flexible and agile defense against evolving 

threats, particularly against the ones that aim at containerized systems [6]. Behavior-based 

detection systems can detect an unknown or polymorphic malware and bypass signature-based 

tools by 

 

Figure 1: Evolution of Malware Detection Technique

Tracking system calls, usage of resources, and behaviors of processes. 

With the containerized environments constantly changing, it has become clear that the high 

degree of behavioral analysis is required [4]. As opposed to holistic monitoring solutions across 

the entire system, fine-grained behavioral analysis is aimed at gaining an in-depth overview of 

the individual containers behavior. Such an approach allows one to reduce false positives in 

the threat detection systems and make the whole system much more efficient. This approach 

makes it possible to detect anomalous activity within the individual containers with higher 

precision [7]. Fine-grained analysis may provide more detailed and accurate insight into the 
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behavior of containers with the use of knowledge of how files are accessed the use of network 

communication, and syscall patterns. It is, therefore, an essential tool for modern containerized 

systems’ protection. 

This research aims to: 

● Assess fine-grained behavioral analysis methods for identifying malwares in 

containerized environments. 

● Find major tools, features and detection models used in the existing container security 

practices. 

● Evaluate the success and constraints of these techniques in solving the modern security 

challenges. 

Background and Motivation 

As containerized environments have become central to modern application deployment, they 

introduce security challenges that demand fine-grained behavioral monitoring from the outset 

[8]. Unlike virtual machines, containers operate with shared kernels, ephemeral lifecycles, and 

dynamic orchestration, creating conditions where traditional detection methods fall short [9]. 

For example, microservice interactions often lead to divergent system call patterns even among 

containers running the same image rendering host-level detection unreliable. Frequent restarts 

and scaling events rebuild process trees, requiring continuous tracking to maintain visibility. 

Additionally, the shared-kernel model introduces noisy neighbor effects, which can mask 

malicious behavior unless monitoring is done at the per-process, per-container level. These 

factors highlight why static and signature-based methods are inadequate and underscore the 

need for behavior-based techniques, such as system call analysis, process lineage tracking, and 

resource profiling, that operate with the necessary granularity to detect modern threats. 

Understanding Behavioral Malware Detection in Containers 

Behavioral malware detection is a dynamic approach that identifies threats by analyzing 

runtime system activities rather than static signatures. Behavioral analysis for malware 

detection revolves around monitoring system activities to detect abnormal behaviors that may 

signal the presence of malicious software [10]. Unlike signature-based detection methods, 

which rely on predefined patterns of known malware, behavioral analysis identifies novel 

threats by examining the dynamic interactions within the system. This method provides a more 

flexible and robust way to identify complex or unknown malware by concentrating on patterns 

of system calls, resource usage, and process behavior. This is especially useful in containerized 

environments where conventional methods often fail. 

Behavioral analysis involves monitoring processes at runtime, observing activities like file 

access patterns, system call behaviors, network communication, and inter-process 

communications. This offers a more sophisticated comprehension of how the system functions, 

making it possible to detect anomalies that might point to malware with greater accuracy. 

Principles and Techniques of Behavioral Malware Detection 

Key techniques for behavioral malware detection in containerized environments include [11]: 

i. System Call Tracing: Capturing system calls made by running processes, enabling the 

identification of suspicious or malicious behavior by comparing observed actions with 

normal patterns. 

ii. Resource Usage Monitoring: Tracking the use of the CPU, memory, disk, and network to 

identify resource spikes or irregular patterns indicative of a potential attack. 
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iii. Process Behavior Analysis: Observing the way processes interact with each other and the 

host environment, helping to spot abnormal behaviors that could point to malicious 

activity. 

These techniques provide the dynamic capabilities necessary for identifying threats that might 

evade traditional, static analysis tools. 

Key Monitoring Tools and Techniques for Malware Detection 

Before the widespread adoption of advanced container security frameworks, several key 

technologies were crucial for monitoring system behavior and identifying malware: 

i. Strace: A system call tracer that helps capture and examine the system calls invoked by 

processes, enabling detection of suspicious or unauthorized activities. 

ii. System Call Tracing: This method monitors system calls as the primary interface between 

user-space programs and the kernel, allowing security experts to detect unusual 

interactions indicative of malware. 

iii. Auditd: In order to identify irregularities in containerized systems, the Linux Auditing 

System logs a variety of system operations, such as file access, process execution, and 

network activity. 

iv. Procfs: The proc filesystem exposes kernel data structures to user space, allowing 

continuous monitoring of system performance and processes. By examining this data, it’s 

possible to detect abnormal system interactions that could signal malicious behavior.  

These technologies were fundamental for security monitoring and early malware detection in 

containerized environments [12]. However, their limitations in handling the scale and dynamic 

nature of containers became apparent over time. To better understand the evolution of detection 

strategies, Table 2 provides a comparison between Static, Behavioral, and Hybrid detection 

approaches in container security.  

Table 2: Comparison of Static vs Behavioral vs Hybrid Detection in Containers 

Detection Type Advantages Disadvantages 

Static Analysis Fast scanning for known 

signatures. 

Lower resource usage. 

Suitable for detecting known 

threats. 

Limited to known malware. 

Fails to detect zero-day or 

polymorphic threats. 

Inadequate for containers. 

Behavioral 

Analysis 

Detects unknown or evolving 

threats. 

Analyzes real-time activities. 

Suitable for dynamic 

environments. 

Resource-intensive. 

Higher false positive rate in noisy 

environments. 

Requires continuous monitoring. 

Hybrid Analysis Combines static and behavioral 

methods. 

Balances detection speed and 

accuracy. 

Effective for complex threats. 

More complex to implement. 

Potentially more resource-

intensive. 

May still miss novel attack vectors. 
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Security Implications of Linux Namespaces and Cgroups in Containers 

Linux namespaces and cgroups are the core technologies that enable containerization by 

providing process isolation and resource management. Namespaces create isolated 

environments for each container, ensuring separate views of system resources (e.g., process 

IDs, network interfaces, file systems) [13]. Cgroups, on the other hand, allocate and limit the 

resources (e.g., CPU, memory, disk I/O) that containers can consume. 

However, these technologies introduce some security challenges due to the shared nature of 

the host kernel. Containers running on the same host share the kernel, which opens up potential 

attack vectors. For instance, vulnerabilities in the kernel or misconfigurations in the container 

runtime can lead to container escapes or privilege escalation attacks. These risks compromise 

the isolation between containers and the host, unlike traditional virtual machines (VMs), which 

have more robust isolation due to separate kernels.  

This figure 2 could depict a container architecture, highlighting potential attack points, such as 

the kernel, namespaces, cgroups and inter-container communication, which are susceptible to 

security vulnerabilities. 

Static analysis remained the dominant method for malware detection in containerized 

environments. However, static techniques faced significant limitations, especially in detecting 

new and evolving malware. Static analysis usually concentrates on looking for known 

signatures in container images, but it is unable to detect threats that take advantage of runtime 

flaws or avoid detection by signature-based tools. Furthermore, it was challenging for static 

analysis tools to offer reliable coverage because of the dynamic and transient characteristics of 

containers, which are frequently created and destroyed. 

As container technologies continued to mature and threats became more sophisticated, the need 

for more dynamic and adaptive security methods became evident. Behavioral analysis emerged 

as a key technique, offering a more flexible and effective means of detecting novel malware in 

these dynamic environments. 

Behavioral Monitoring Techniques in Container Environments 

As containerization gained traction in the software development world, security experts had to 

adapt existing monitoring tools and techniques to ensure the safety of containerized 

environments [14]. Unlike traditional systems, containers are highly dynamic, ephemeral, and 

share the same host kernel, presenting unique security challenges. Traditional security 

methods, such as signature-based malware detection, struggled to stay up with the evolving 

threat landscape. As a result, behavioral monitoring became crucial in identifying malicious 

activities in containers. This section explores the key system-level tracing tools, process 

analysis techniques, and early behavioral monitoring tools used to detect anomalies in 

containerized environments. 

System-Level Tracing: Sysdig, Auditd, and Seccomp Logs 

System-level tracing is one of the foundational techniques for monitoring and detecting 

malicious activities in containerized environments. By capturing and analyzing the system calls 

made by running processes, these tools provide insights into the interactions between 

containers and the host system. 

Sysdig 

sysdig is a powerful tool designed for system visibility and troubleshooting. It can monitor and 

capture system calls, enabling the detection of potentially malicious activity in containers. 
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sysdig allows for real-time tracing of system interactions, including the creation of files, 

network connections, and process creation. This makes it particularly useful for identifying 

suspicious behavior, such as attempts to exploit kernel vulnerabilities or escalate privileges. 

auditd 

 Another important tool for documenting system activity is the Linux Auditing System, which 

is represented by auditd. It records a number of activities, such as system calls, file access, and 

user actions. A useful tool for keeping an eye on container interactions and spotting unusual 

activity that might point to malware or intrusions is Auditd. 

seccomp logs 

Seccomp (Secure Computing Mode) is a Linux kernel feature that restricts the set of system 

calls a containerized process can execute. It helps minimize the attack surface by enforcing 

syscall whitelists. Monitoring seccomp logs is essential for detecting attempts to invoke 

blocked or unauthorized syscalls, which may indicate an attempt to bypass security restrictions 

or exploit kernel-level vulnerabilities. While lightweight and efficient, seccomp’s effectiveness 

depends heavily on how well its syscall filtering policies are defined and enforced. 

 

Figure 2: Architecture of Container with Labeled Attack Points

Analyzing Process Tree and Syscall Frequency 

A critical aspect of behavioral analysis is examining the way processes interact with each other 

and the host system. Unusual behaviors such as excessive system calls, abnormal process trees, 

or strange resource usage can indicate malicious activities [15]. Anomalous behaviors may 

involve malware executing unusual patterns of system calls or spawning processes in ways that 

deviate from typical patterns. 

Process Tree Analysis 

 Running processes' hierarchy and interactions are shown by the process tree. A malware 

infection might show up as a new process or a series of processes straying from the expected 

process hierarchy. Analyzing these connections helps security experts spot abnormal process 

execution and find hostile activity including lateral movement between containers or privilege 

escalation. 

Syscall Frequency Analysis 

Monitoring the frequency of system calls made by containerized applications can provide 

another layer of insight. In a normal containerized environment, processes make a predictable 
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set of system calls at certain frequencies. However, a compromised container might exhibit 

unusual or frequent system calls that could point to malware attempting to exploit the system 

or gain unauthorized access. 

Early Versions of Behavioral Monitoring Tools: Falco and AppArmor 

Several behavioral monitoring tools [16] began to gain popularity within container security: 

Falco 

Made for containerized systems, Falco is an open-source, runtime security monitoring tool. 

Using system calls, file accesses, and network activity, it seeks out unusual behavior. Falco can 

spot possibly harmful behaviors including containers trying to access files or network resources 

they shouldn't by always tracking container interactions with the host system. Highly flexible, 

the tool can be set to identify particular harmful trends within the container environment. 

AppArmor 

While Falco focuses on behavioral detection, AppArmor offers policy-based enforcement. Its 

security profiles can block containers from performing unauthorized actions, such as accessing 

restricted directories or modifying kernel parameters. Though early versions lacked dynamic 

behavioral insights, AppArmor’s integration with container runtimes like Docker and 

Kubernetes adds an important layer of proactive defense by preventing known attack patterns 

through pre-defined rules. 

 

Figure 3: Bar Chart Comparing Overhead of Major Monitoring Tools 

This graph would compare the resource overhead (e.g., CPU usage, memory consumption) of 

popular container monitoring tools such as sysdig, auditd, Falco, and AppArmor. Monitoring 

the overhead is important because it provides insight into how much resources are consumed 

by each tool while detecting malware or anomalous behavior. A tool with higher overhead may 

interfere with the performance of containerized applications, making it less suitable for 

production environments. 

Kernel Instrumentation Techniques: kprobes and eBPF  

Kernel instrumentation tools provide deep visibility into the internals of containerized systems, 

allowing for the detection of malicious activity at the kernel level. These techniques offer 
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powerful monitoring capabilities but may have certain limitations when it comes to 

performance and container awareness. 

Kprobes 

kprobes is a Linux kernel feature that allows dynamic instrumentation of almost any kernel 

function. It enables developers and security analysts to insert probes at specific points in the 

kernel and collect information when those functions are executed. In the context of container 

security, kprobes can be used to trace container-related system calls, monitor file access, or 

intercept privilege escalation attempts. 

Strengths: 

i. Flexible placement of probes in arbitrary kernel code. 

ii. Minimal performance overhead when used sparingly. 

iii. Valuable for debugging and low-level monitoring in research and forensic contexts. 

Limitations: 

i. Requires kernel-specific knowledge and careful configuration. 

ii. Risk of destabilizing the system if improperly implemented. 

iii. Not ideal for large-scale, real-time monitoring due to potential performance impact at 

scale. 

eBPF 

eBPF extends the capabilities of kprobes by enabling the execution of sandboxed programs in 

the kernel without modifying kernel code or inserting kernel modules. eBPF can hook into a 

variety of kernel events, such as system calls, network packets, and tracepoints, making it a 

flexible and efficient framework for real-time container monitoring. 

Strengths: 

i. Low-overhead, high-performance monitoring suitable for production environments. 

ii. Enables complex logic and filtering within the kernel, reducing user-space processing 

needs. 

iii. Integrates well with modern observability stacks (e.g., Prometheus, Grafana) and security 

tools (e.g., Cilium, Tracee). 

Limitations: 

i. Steep learning curve due to kernel constraints and eBPF programming model. 

ii. Still evolving, with some features dependent on newer kernel versions. 

iii. Security implications of running custom code in the kernel space must be carefully 

managed. 

The Table 3 summarizes the capabilities and limitations of key monitoring tools used in 

container security. It provides an overview of the tool's granularity of monitoring, support for 

the Linux kernel, and awareness of container-specific behaviors. 
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Table 3: Tool Matrix Capabilities, Granularity, Kernel Support, Container Awareness 

Tool Capabilities Granularity Kernel 

Support 

Container 

Awareness 

Sysdig Real-time system 

calls monitoring, 

process tracking 

Fine-grained 

(per system call) 

Kernel-level 

support 

Full container 

awareness 

Auditd Event auditing, file 

system monitoring 

Process-level Kernel-level 

support 

Partial container 

awareness 

Seccomp Securing system 

calls, policy 

enforcement 

Fine-grained 

(per system call) 

Kernel-level 

support 

Partial container 

awareness 

Falco Runtime security, 

syscall monitoring 

Fine-grained 

(per syscall, file 

access) 

Kernel-level 

support 

Full container 

awareness 

AppArmor Mandatory access 

control, policy 

enforcement 

Process-level Kernel-level 

support 

Full container 

awareness (with 

configuration) 

Kprobes Kernel-level 

function tracing 

Very fine-

grained 

Kernel-level 

support 

Limited container 

awareness 

eBPF High-performance 

monitoring, kernel 

events 

Fine-grained 

(per event) 

Kernel-level 

support 

Limited container 

awareness 

The behavioral monitoring techniques described in this section provide a foundation for 

understanding the evolution of container security. By shifting from static analysis to more 

dynamic, real-time monitoring tools, the security community has made significant strides in 

detecting and mitigating threats within containerized environments. These techniques are 

critical in ensuring that containers remain secure as they continue to play a central role in 

modern application deployment. 

Fine-Grained Behavioral Features Used in Detection 

As malware techniques became increasingly evasive and polymorphic in containerized 

environments, the need for fine-grained behavioral detection mechanisms grew significantly 

[17]. Traditional binary-based or static approaches were limited in their ability to detect novel 

malware variants, especially in ephemeral and resource-constrained container environments. 

Researchers and security systems started to create detection models able to detect subtle, 

aberrant behaviors suggestive of compromise by concentrating on exact behavioral indicators 

down to system calls, memory use, and access patterns. Key behavioral traits applied and their 

significance in container malware detection are described in this part. 
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Syscall Sequences (n-gram Modeling & LSTM Approaches) 

System calls sequences serve as a low-level yet powerful feature for behavior modeling. Since 

all high-level actions by applications ultimately translate to sequences of syscalls, they provide 

a reliable lens through which malicious activity can be observed. 

● Among the first methods to describe normal and anomalous syscall behavior were n-

gram models, which record fixed-length sequences of syscalls—e.g., trigrams or 5-

grams. Although basic, these statistical models were good in spotting deviations from 

accepted standards of performance. 

● LSTM (Long Short-Term Memory) models, a type of recurrent neural network (RNN), 

began gaining traction before 2021 for their ability to model longer temporal 

dependencies in syscall patterns. LSTMs showed promise in distinguishing between 

benign and malicious container behavior without requiring prior knowledge of specific 

malware signatures. 

 

Figure 4: Example syscall trace showing benign vs. malicious pattern 

This figure would visualize syscall sequences during normal operation (e.g., standard 

input/output, file read/write) compared with a trace collected during a known attack (e.g., 

privilege escalation, kernel exploit), highlighting the divergence in call patterns. 

File Access Patterns & Entropy Detection 

Malware often interacts with files in unusual ways scanning directories, modifying 

configurations, or writing encrypted payloads. Behavioral monitoring of file access can reveal 

several red flags: 

● Frequent access to sensitive files (e.g., /etc/passwd, /var/log) 

● High-entropy writes, which might be a sign of payload obfuscation or cryptographic 

techniques used in ransomware 

● Unusual read/write patterns such as recursive file access or unexpected access 

timestamps 

These indicators were commonly used to flag unauthorized activity in container instances 

where ephemeral storage might otherwise make forensics difficult. 

Network Socket Creation & DNS Call Frequency 

Another crucial component of behavior-based detection is network behavior monitoring. 

Numerous malware variations try lateral movement, exfiltrate data via DNS, or establish 

outgoing connections to command-and-control (C2) servers. 

● Excessive or rapid DNS resolution attempts can be an indicator of domain generation 

algorithms (DGAs) commonly used by malware. 
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● Backdoors or reverse shell activity may be indicated by repeated or suspicious socket 

creations, particularly to unusual ports or public IPs. 

● Correlating network activity with process and user identity adds context that improves 

detection fidelity in multi-tenant container clusters. 

Memory Usage Spikes & Fork-Bomb Heuristics 

Containers are typically subject to strict resource quotas. A sudden spike in memory usage or 

an unexpected surge in child processes (e.g., via fork ()) can indicate malicious behavior such 

as: 

● Fork bombs, designed to overwhelm a host by recursively spawning processes 

● Techniques for memory spraying that are used in exploits 

● In-memory payload injection that circumvents disk-based detection 

Behavioral baselining of resource use was a common pre-2021 approach, often integrated into 

container orchestrators or sidecar monitoring agents. 

Process Injection & Privilege Escalation Indicators 

Advanced threats in containers sometimes attempt process injection (e.g., ptrace hijacking) or 

escalation to root privileges, particularly in weakly isolated environments. 

● Behavior-based signals included the use of ptrace, execve chains, or modifications to 

/proc entries 

● Lateral movement or breakout attempts were frequently preceded by abnormal parent-

child process relationships (e.g., nginx spawning a shell). 

● Escalation attempts were correlated with changes in user ID (setuid(), setgid()) or 

manipulation of container runtime flags 

These features, while subtle, became essential in early behavior-based intrusion detection 

systems (IDS) such as Falco and in customized eBPF security monitors. 

Detection Algorithms and Models Used  

As containerized environments gained popularity in the late 2010s, several machine learning–

based detection models were adapted and evaluated for malware detection [18]. These 

algorithms many of which had been successful in earlier host-based or virtualized setups were 

repurposed to handle container-specific behavioral telemetry such as syscall traces, network 

activity, and resource usage patterns. However, the algorithms and models employed were 

largely limited by their training data volume, architectural constraints, and inability to 

generalize to the rapidly evolving threat landscape. This section highlights the core techniques 

that dominated behavior-based detection, which have since been surpassed by more scalable, 

container-native solutions. 

Decision Trees, Random Forests, and SVMs: Non–Deep Learning ML Models 

Traditional supervised learning models such as Decision Trees, Random Forests, and Support 

Vector Machines (SVMs) were among the earliest ML techniques applied to system behavior 

classification tasks [19]. 

● Because of their interpretability and low processing demands, decision trees and 

random forests were preferred. Syscall frequency patterns or categorical features (like 

file write flags or network port access) could be mapped to benign or malicious labels 

using these models. 
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● SVMs were applied for their ability to handle high-dimensional syscall vectors, often 

using radial basis function (RBF) kernels. 

Despite their usefulness in detecting known behavioral signatures, these models struggled with 

generalization to new malware families and often required extensive feature engineering. 

Hidden Markov Models (HMMs) and Clustering via K-Means 

To model the sequential nature of syscalls and process behaviors, researchers experimented 

with probabilistic sequence models and unsupervised clustering techniques [20]. 

● Hidden Markov Models (HMMs) were employed to represent typical syscall transitions 

in benign applications and flag sequences with low likelihood scores. 

● K-Means clustering was used to group similar behavioral traces, with anomalies 

identified as low-density or distant samples from the main clusters. 

These models, while innovative at the time, lacked the capacity to scale to highly dynamic 

container workloads and were prone to high false positives in multi-tenant clusters. 

Early LSTM-Based Detection 

An important step toward deep learning-driven detection was the development of LSTM (Long 

Short-Term Memory) networks. LSTMs were particularly well-suited to modeling syscall 

streams and multivariate time-series data because they could learn temporal dependencies in 

system behavior. 

However, implementations had notable constraints: 

● Training datasets were often small and lacked diversity across container types or 

workloads. 

● Models were typically trained offline and struggled to adapt in real-time container 

orchestrations. 

● Interpretability remained an issue, limiting operational adoption in SOC (Security 

Operations Center) pipelines. 

Still, LSTMs set the stage for future work in neural sequence modeling for malware detection. 

Signature-Augmented Behavioral Detection (Hybrid Approaches) 

Several systems relied on hybrid detection models that combined behavioral monitoring with 

signature-based lookups: 

● Signature engines were used to detect known malware families (e.g., via rule-based 

systems like YARA or ClamAV). 

● Static rules were combined with ML model anomaly scores (such as unexpected port 

access or syscall outliers) to generate composite alerts. 

While these hybrids improved detection rates for known threats, they were ultimately limited 

by signature drift and inability to identify zero-day threats or behavioral mimicry. 
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Figure 5: ROC Curves of Obsolete Models Tested on Sample Datasets 

The figure 5 could show comparative Receiver Operating Characteristic (ROC) curves of 

models like SVM, Random Forest, LSTM, and HMM on benchmark behavioral datasets. It 

would illustrate trade-offs between true positive rates and false positives, with older models 

showing weaker AUC (Area Under Curve) scores. 
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Table: Summary of ML Models Used for Container Malware Detection  

Model Type Approach Detection Strengths Limitations 

Decision Trees / 

Random Forests 

Supervised, 

interpretable 

Fast, transparent logic 

trees 

Required manual features, 

overfitting on small sets 

SVM (RBF 

Kernel) 

Supervised, 

nonlinear 

Good for binary syscall 

classification 

Limited scalability, hard 

to tune 

HMM Probabilistic 

sequence 

Modeled syscall 

transitions well 

Poor generalization, 

sensitive to noise 

K-Means 

Clustering 

Unsupervised Helped flag outliers in 

syscall patterns 

High false positive rate, 

no time-series modeling 

LSTM (Early Use) Neural sequence 

modeling 

Captured long-range 

syscall dependencies 

Small training sets, black-

box nature 

Hybrid (Signature 

+ Behavior) 

Rule-based + 

ML 

Effective for known 

malware + anomalies 

Poor zero-day coverage, 

signature maintenance 

Early models laid the foundation for container-native security, but their static assumptions and 

limited context-awareness underscored the need for more scalable, adaptive approaches. This 

gap has been addressed with technologies like eBPF, richer telemetry pipelines, and real-time 

behavioral baselining. Modern deep learning methods—particularly CNNs and GNNs—offer 

improved detection by leveraging complex container data. CNNs enable pattern recognition 

from syscall and network activity streams, while GNNs model relationships between processes, 

containers, and orchestration metadata, enabling context-aware and cross-container threat 

detection. These models are better suited for identifying sophisticated behaviors missed by 

earlier techniques. 

Limitations of These Techniques in Modern Context 

As the container ecosystem matured particularly with the rise of Kubernetes-based 

orchestration and microservices architecture the detection techniques and models used began 

to show clear limitations. While they provided early promise for identifying behavioral 

anomalies in container workloads, they could not scale effectively or adapt to the increasing 

complexity of cloud-native environments. This section examines the critical shortcomings of 

these legacy approaches in the context of modern infrastructure demands. 

Inefficiency in Cloud-Native & Kubernetes-Based Orchestration 

Early detection tools were not designed with cloud-native principles in mind. Many solutions 

assumed static container lifecycles, limited horizontal scaling, and minimal orchestration 

dynamics [21]. 

● These tools lacked awareness of transient container lifespans, dynamic scaling, and 

frequent image redeployments common in Kubernetes. 

● Many models required full logs, complete traces, or centralized processing—unsuitable 

for ephemeral, distributed, and large-scale container environments. 
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High False Positive Rates 

Behavioral models from this era especially those relying on simple frequency or clustering 

methods often produced high false positive rates when exposed to real-world workloads. 

● Legitimate but rare workload behaviors (e.g., backup scripts, ephemeral processes) 

were misclassified as malicious. 

● The models produced noisy alerts because they lacked contextual awareness (such as 

time-of-day patterns or container role) and adaptive baselining. 

● Security teams faced alert fatigue and low signal-to-noise ratios, reducing trust in the 

systems. 

Lack of Cross-Container Correlation or Awareness 

Most legacy behavioral tools focused on analyzing individual containers in isolation. 

● They could not identify attack patterns that spanned multiple containers or pods, such 

as lateral movement or shared volume exploits. 

● There was no ability to track identity, context, or behavioral continuity across container 

restarts, replicas, or service meshes. 

● Without cross-container telemetry stitching, sophisticated threat campaigns evaded 

detection by staying below per-container anomaly thresholds. 

Inability to Detect Sophisticated APTs or Polymorphic Malware 

Advanced Persistent Threats (APTs), polymorphic malware, and living-off-the-land techniques 

require deeper behavioral inference and context-aware analytics. 

● Legacy tools lacked memory introspection, process lineage analysis, or in-depth 

runtime correlation to detect stealthy persistence techniques. 

● Polymorphic code frequently used in evasive container malware escaped signature-

augmented models entirely. 

● These tools failed to account for malware that adapts behavior based on environmental 

signals (e.g., sandbox detection evasion) 

 No Support for Runtime Context-Awareness 

Modern container security requires embedding detection within runtime context accounting for 

process ancestry, runtime flags, container metadata, and pod-level configurations. 

● Models ignored key runtime parameters such as container labels, namespaces, cgroups 

hierarchy, and deployment intent. 

● Lack of integration with orchestration APIs (Kubernetes RBAC, service accounts, 

network policies) meant that behavioral anomalies were assessed without 

understanding user roles or policy violations. 

● As a result, decisions were made in a vacuum, leading to poor detection fidelity. 

Ethical and Legal Concerns in Multi-Tenant Environments 

Behavioral telemetry collection in containerized infrastructures especially within shared or 

multi-tenant clusters raises ethical and legal considerations. 
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● Monitoring tools that capture detailed system calls, file access patterns, or process 

lineage may unintentionally expose sensitive data or user-specific behaviors, especially 

in SaaS or cloud-hosted environments. 

● Compliance with data privacy regulations such as GDPR, HIPAA, or CCPA becomes 

challenging when behavioral logging is insufficiently scoped or lacks clear tenant 

separation. 

● Researchers and practitioners must weigh detection accuracy against user privacy, 

ensuring that telemetry collection aligns with least privilege principles and includes 

opt-in policies or pseudonymization techniques where required. 

 

Figure 6: Transition from Traditional to Modern Behavioral Detection Architectures 

This figure 6 contrasts outdated behavioral detection methods with modern, container-native 

approaches. It emphasizes how contemporary architectures address the limitations of legacy 

tools by enabling real-time, scalable, and context-rich threat detection across dynamic 

containerized workloads. 

CONCLUSION AND RECOMMENDATION 

Conclusion 

This research has explored the landscape of fine-grained behavioral malware detection 

techniques as applied to containerized environments. At the time, detection strategies centered 

on low-level system telemetry such as syscall sequences, process trees, and file access behavior 

paired with lightweight machine learning models. By providing more flexibility to new threats 

within container runtimes, these tools and approaches closed a significant gap left by 

conventional signature-based detection 

Despite their innovation at the time, the approaches examined in this study demonstrated 

several limitations when viewed through the lens of contemporary cloud-native infrastructure. 

Techniques based on static syscall modeling or isolated container analysis struggled with 

scalability and precision. They frequently produced high false positives, lacked context-

awareness (e.g., orchestrator metadata or cross-container relationships), and failed to detect 

stealthy or polymorphic malware such as Advanced Persistent Threats (APTs). Although tools 

like Sysdig and Auditd provided useful observability, their applicability in production 

workloads was limited by their quantifiable performance overhead. 

Nonetheless, these early techniques laid a vital foundation. They contributed to a broader shift 

from signature-based toward behavior-based security models and fostered the development of 

real-time, fine-grained monitoring paradigms that informed the next generation of tools. The 
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historical techniques covered in this research now serve as an important benchmark against 

which modern solutions can be measured. 

Recommendations 

Looking forward, future research should focus on integrating high-fidelity behavioral signals 

with context-rich runtime environments, leveraging technologies like extended Berkeley 

Packet Filter (eBPF), Graph Neural Networks (GNNs), and orchestrator-level visibility. While 

these advancements are outside the scope of this paper, they directly address the drawbacks 

and achievements of the methods discussed here.  Thus, understanding these outdated methods 

is not merely of archival value it is critical to shaping the trajectory of container security in the 

years ahead. 
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