

Fine- Grained Behavioral Analysis for Malware Detection in

Containerized Environments

Khaja Kamaluddin

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.4, Issue 4, pp 1-20, 2021 www.ajpojournals.org

https://doi.org/10.47672/ajce.2725 1 Kamaluddin (2021)

Fine-Grained Behavioral Analysis for Malware Detection in Containerized

Environments

Khaja Kamaluddin

Masters in Sciences, Fairleigh Dickinson University, Teaneck, NJ, USA, Aonsoft

International Inc, 1600 Golf Rd, Suite 1270, Rolling Meadows, Illinois, 60008 USA

Article history

Submitted 19.04.2021 Revised Version Received 20.05.2021 Accepted 24.06.2021

Abstract

Purpose: Containerized environments

have become foundational to modern

software development due to their

portability, scalability, and efficient

resource utilization. However, their shared-

kernel architecture introduces distinct

security challenges, particularly in malware

detection. This study presents a historical

analysis of fine-grained, behavior-based

malware detection techniques within

containerized systems.

Materials and Methods: We examine

early machine learning approaches,

including Decision Trees, Hidden Markov

Models, and LSTM networks trained with

limited datasets alongside system call

tracing and process behavior profiling.

Findings: While these techniques are now

outdated, they marked critical early steps

beyond static and signature-based detection

in dynamic, containerized infrastructures.

We analyse behavioural features such as

syscall sequences, memory anomalies, and

DNS irregularities, assessing their

detection performance and limitations in

orchestrated environments. The paper

further contextualizes these legacy methods

in light of modern advancements, including

eBPF-based monitoring and context-aware

deep learning models.

Unique Contribution to Theory, Practice

and Policy: Key recommendations include

leveraging eBPF for efficient runtime

monitoring, incorporating orchestration

metadata for context-aware detection, and

enabling cross-container correlation for

identifying lateral movement. This

retrospective establishes a comparative

framework that informs the development of

adaptive, real-time security solutions, such

as graph neural networks and behavioural

baselining, thereby guiding future research

in runtime container security.

Keywords: Container Security (O33);

Behavioral Malware Detection (D83,

O33); eBPF Monitoring (C63, C88);

Kubernetes Security (O33); Runtime

Threat Detection (C63, O33); Cloud-

Native Security (O33, L86); Anomaly

Detection (C63, D83); Historical Security

Analysis (D83, H56).

http://www.ajpojournals.org/
https://orcid.org/
https://doi.org/10.47672/ajce.2725

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.4, Issue 4, pp 1-20, 2021 www.ajpojournals.org

https://doi.org/10.47672/ajce.2725 2 Kamaluddin (2021)

INTRODUCTION

The rise of container technologies such as Docker, LXC and Kubernetes has dramatically

transformed the way modern applications are developed, deployed, and scaled [1]. Containers

offer a lightweight, efficient, and portable solution, enabling applications to run consistently

across diverse environments. Containers streamline deployment, improve scalability and

maximise resource utilisation by encapsulating an application and its dependencies into a single

unit. Containerization has consequently emerged as a crucial element of contemporary software

development and operations, especially in cloud-native settings [2].

However, due to an increased popularity of containers, unique issues regarding security have

arisen. At the beginning of the life cycle of the container technologies, issues were raised about

the isolation between containers and the containers’ host operating systems [3]. Although

containers create some isolation, they compete for the same underling host services, exposing

them to attacks like container escapes, privilege escalation, and resource contention. The new

menaces that surrounded potent containerized systems were not amply handled by the

traditional security mechanisms such as the host-based firewalls, intrusion detection systems

(IDS), which were originally designed for virtual or physical settings. Container runtimes

misconfigurations and issues further worsen these problems, indicating a need for specific

security solutions for the container model [4].

The figure 1 represents the development of malware detections technologies with a specific

focus on traditional to behavior-based changes. This timeline emphasizes the increased need

for dynamic behavior-driven defenses, as the containerized environments started dominating

the landscape and becoming increasingly advanced.

Moreover, a comparison of threat surfaces between traditional VM’s and containerized

landscape is presented in the table 1, in order to point out unique security aspects concerning

containerized environments. This comparison demonstrates how the container technologies

add new risks and complexities hence requiring addressing of old security paradigms.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.4, Issue 4, pp 1-20, 2021 www.ajpojournals.org

https://doi.org/10.47672/ajce.2725 3 Kamaluddin (2021)

Table 1: Comparison of Threat Surfaces Between Traditional Virtual Machines (VMs)

and Containerized Environments

Aspect Traditional Virtual

Machines (VMs)

Containerized Environments

Isolation Strong isolation with separate

kernels and virtualized

resources.

Weaker isolation, as containers share the

same kernel.

Resource

Sharing

Fully isolated resources (CPU,

memory, disk).

Shared resources at the host OS level,

increasing risks.

Security

Boundaries

Clear separation between VMs

and the hypervisor.

Shared kernel increases attack surface.

Attack Surface Limited to the VM and

hypervisor.

Broader attack surface, including

container runtime and shared host OS.

Kernel

Vulnerabilities

Vulnerabilities affect only the

specific VM’s kernel.

Kernel vulnerabilities impact all

containers on the same host.

Performance

Overhead

Higher overhead due to

hardware virtualization.

Lower overhead, as containers run as

processes on the host OS.

Behavior-based malware detection methods have become increasingly popular in response to

these security flaws [5]. Based on behavior detection, behavior-based detection relies on

monitoring system activities and identifying anomalies deviating from the norms as opposed

to the former signature-based detection systems that focus on established patterns of malicious

activity. Signature-based methods are good for known threats but are not so good at detecting

original or innovative threats especially those that are designed to avoid detection systems.

However, behavior-based approaches provide flexible and agile defense against evolving

threats, particularly against the ones that aim at containerized systems [6]. Behavior-based

detection systems can detect an unknown or polymorphic malware and bypass signature-based

tools by

Figure 1: Evolution of Malware Detection Technique

Tracking system calls, usage of resources, and behaviors of processes.

With the containerized environments constantly changing, it has become clear that the high

degree of behavioral analysis is required [4]. As opposed to holistic monitoring solutions across

the entire system, fine-grained behavioral analysis is aimed at gaining an in-depth overview of

the individual containers behavior. Such an approach allows one to reduce false positives in

the threat detection systems and make the whole system much more efficient. This approach

makes it possible to detect anomalous activity within the individual containers with higher

precision [7]. Fine-grained analysis may provide more detailed and accurate insight into the

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.4, Issue 4, pp 1-20, 2021 www.ajpojournals.org

https://doi.org/10.47672/ajce.2725 4 Kamaluddin (2021)

behavior of containers with the use of knowledge of how files are accessed the use of network

communication, and syscall patterns. It is, therefore, an essential tool for modern containerized

systems’ protection.

This research aims to:

● Assess fine-grained behavioral analysis methods for identifying malwares in

containerized environments.

● Find major tools, features and detection models used in the existing container security

practices.

● Evaluate the success and constraints of these techniques in solving the modern security

challenges.

Background and Motivation

As containerized environments have become central to modern application deployment, they

introduce security challenges that demand fine-grained behavioral monitoring from the outset

[8]. Unlike virtual machines, containers operate with shared kernels, ephemeral lifecycles, and

dynamic orchestration, creating conditions where traditional detection methods fall short [9].

For example, microservice interactions often lead to divergent system call patterns even among

containers running the same image rendering host-level detection unreliable. Frequent restarts

and scaling events rebuild process trees, requiring continuous tracking to maintain visibility.

Additionally, the shared-kernel model introduces noisy neighbor effects, which can mask

malicious behavior unless monitoring is done at the per-process, per-container level. These

factors highlight why static and signature-based methods are inadequate and underscore the

need for behavior-based techniques, such as system call analysis, process lineage tracking, and

resource profiling, that operate with the necessary granularity to detect modern threats.

Understanding Behavioral Malware Detection in Containers

Behavioral malware detection is a dynamic approach that identifies threats by analyzing

runtime system activities rather than static signatures. Behavioral analysis for malware

detection revolves around monitoring system activities to detect abnormal behaviors that may

signal the presence of malicious software [10]. Unlike signature-based detection methods,

which rely on predefined patterns of known malware, behavioral analysis identifies novel

threats by examining the dynamic interactions within the system. This method provides a more

flexible and robust way to identify complex or unknown malware by concentrating on patterns

of system calls, resource usage, and process behavior. This is especially useful in containerized

environments where conventional methods often fail.

Behavioral analysis involves monitoring processes at runtime, observing activities like file

access patterns, system call behaviors, network communication, and inter-process

communications. This offers a more sophisticated comprehension of how the system functions,

making it possible to detect anomalies that might point to malware with greater accuracy.

Principles and Techniques of Behavioral Malware Detection

Key techniques for behavioral malware detection in containerized environments include [11]:

i. System Call Tracing: Capturing system calls made by running processes, enabling the

identification of suspicious or malicious behavior by comparing observed actions with

normal patterns.

ii. Resource Usage Monitoring: Tracking the use of the CPU, memory, disk, and network to

identify resource spikes or irregular patterns indicative of a potential attack.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.4, Issue 4, pp 1-20, 2021 www.ajpojournals.org

https://doi.org/10.47672/ajce.2725 5 Kamaluddin (2021)

iii. Process Behavior Analysis: Observing the way processes interact with each other and the

host environment, helping to spot abnormal behaviors that could point to malicious

activity.

These techniques provide the dynamic capabilities necessary for identifying threats that might

evade traditional, static analysis tools.

Key Monitoring Tools and Techniques for Malware Detection

Before the widespread adoption of advanced container security frameworks, several key

technologies were crucial for monitoring system behavior and identifying malware:

i. Strace: A system call tracer that helps capture and examine the system calls invoked by

processes, enabling detection of suspicious or unauthorized activities.

ii. System Call Tracing: This method monitors system calls as the primary interface between

user-space programs and the kernel, allowing security experts to detect unusual

interactions indicative of malware.

iii. Auditd: In order to identify irregularities in containerized systems, the Linux Auditing

System logs a variety of system operations, such as file access, process execution, and

network activity.

iv. Procfs: The proc filesystem exposes kernel data structures to user space, allowing

continuous monitoring of system performance and processes. By examining this data, it’s

possible to detect abnormal system interactions that could signal malicious behavior.

These technologies were fundamental for security monitoring and early malware detection in

containerized environments [12]. However, their limitations in handling the scale and dynamic

nature of containers became apparent over time. To better understand the evolution of detection

strategies, Table 2 provides a comparison between Static, Behavioral, and Hybrid detection

approaches in container security.

Table 2: Comparison of Static vs Behavioral vs Hybrid Detection in Containers

Detection Type Advantages Disadvantages

Static Analysis Fast scanning for known

signatures.

Lower resource usage.

Suitable for detecting known

threats.

Limited to known malware.

Fails to detect zero-day or

polymorphic threats.

Inadequate for containers.

Behavioral

Analysis

Detects unknown or evolving

threats.

Analyzes real-time activities.

Suitable for dynamic

environments.

Resource-intensive.

Higher false positive rate in noisy

environments.

Requires continuous monitoring.

Hybrid Analysis Combines static and behavioral

methods.

Balances detection speed and

accuracy.

Effective for complex threats.

More complex to implement.

Potentially more resource-

intensive.

May still miss novel attack vectors.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.4, Issue 4, pp 1-20, 2021 www.ajpojournals.org

https://doi.org/10.47672/ajce.2725 6 Kamaluddin (2021)

Security Implications of Linux Namespaces and Cgroups in Containers

Linux namespaces and cgroups are the core technologies that enable containerization by

providing process isolation and resource management. Namespaces create isolated

environments for each container, ensuring separate views of system resources (e.g., process

IDs, network interfaces, file systems) [13]. Cgroups, on the other hand, allocate and limit the

resources (e.g., CPU, memory, disk I/O) that containers can consume.

However, these technologies introduce some security challenges due to the shared nature of

the host kernel. Containers running on the same host share the kernel, which opens up potential

attack vectors. For instance, vulnerabilities in the kernel or misconfigurations in the container

runtime can lead to container escapes or privilege escalation attacks. These risks compromise

the isolation between containers and the host, unlike traditional virtual machines (VMs), which

have more robust isolation due to separate kernels.

This figure 2 could depict a container architecture, highlighting potential attack points, such as

the kernel, namespaces, cgroups and inter-container communication, which are susceptible to

security vulnerabilities.

Static analysis remained the dominant method for malware detection in containerized

environments. However, static techniques faced significant limitations, especially in detecting

new and evolving malware. Static analysis usually concentrates on looking for known

signatures in container images, but it is unable to detect threats that take advantage of runtime

flaws or avoid detection by signature-based tools. Furthermore, it was challenging for static

analysis tools to offer reliable coverage because of the dynamic and transient characteristics of

containers, which are frequently created and destroyed.

As container technologies continued to mature and threats became more sophisticated, the need

for more dynamic and adaptive security methods became evident. Behavioral analysis emerged

as a key technique, offering a more flexible and effective means of detecting novel malware in

these dynamic environments.

Behavioral Monitoring Techniques in Container Environments

As containerization gained traction in the software development world, security experts had to

adapt existing monitoring tools and techniques to ensure the safety of containerized

environments [14]. Unlike traditional systems, containers are highly dynamic, ephemeral, and

share the same host kernel, presenting unique security challenges. Traditional security

methods, such as signature-based malware detection, struggled to stay up with the evolving

threat landscape. As a result, behavioral monitoring became crucial in identifying malicious

activities in containers. This section explores the key system-level tracing tools, process

analysis techniques, and early behavioral monitoring tools used to detect anomalies in

containerized environments.

System-Level Tracing: Sysdig, Auditd, and Seccomp Logs

System-level tracing is one of the foundational techniques for monitoring and detecting

malicious activities in containerized environments. By capturing and analyzing the system calls

made by running processes, these tools provide insights into the interactions between

containers and the host system.

Sysdig

sysdig is a powerful tool designed for system visibility and troubleshooting. It can monitor and

capture system calls, enabling the detection of potentially malicious activity in containers.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.4, Issue 4, pp 1-20, 2021 www.ajpojournals.org

https://doi.org/10.47672/ajce.2725 7 Kamaluddin (2021)

sysdig allows for real-time tracing of system interactions, including the creation of files,

network connections, and process creation. This makes it particularly useful for identifying

suspicious behavior, such as attempts to exploit kernel vulnerabilities or escalate privileges.

auditd

 Another important tool for documenting system activity is the Linux Auditing System, which

is represented by auditd. It records a number of activities, such as system calls, file access, and

user actions. A useful tool for keeping an eye on container interactions and spotting unusual

activity that might point to malware or intrusions is Auditd.

seccomp logs

Seccomp (Secure Computing Mode) is a Linux kernel feature that restricts the set of system

calls a containerized process can execute. It helps minimize the attack surface by enforcing

syscall whitelists. Monitoring seccomp logs is essential for detecting attempts to invoke

blocked or unauthorized syscalls, which may indicate an attempt to bypass security restrictions

or exploit kernel-level vulnerabilities. While lightweight and efficient, seccomp’s effectiveness

depends heavily on how well its syscall filtering policies are defined and enforced.

Figure 2: Architecture of Container with Labeled Attack Points

Analyzing Process Tree and Syscall Frequency

A critical aspect of behavioral analysis is examining the way processes interact with each other

and the host system. Unusual behaviors such as excessive system calls, abnormal process trees,

or strange resource usage can indicate malicious activities [15]. Anomalous behaviors may

involve malware executing unusual patterns of system calls or spawning processes in ways that

deviate from typical patterns.

Process Tree Analysis

 Running processes' hierarchy and interactions are shown by the process tree. A malware

infection might show up as a new process or a series of processes straying from the expected

process hierarchy. Analyzing these connections helps security experts spot abnormal process

execution and find hostile activity including lateral movement between containers or privilege

escalation.

Syscall Frequency Analysis

Monitoring the frequency of system calls made by containerized applications can provide

another layer of insight. In a normal containerized environment, processes make a predictable

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.4, Issue 4, pp 1-20, 2021 www.ajpojournals.org

https://doi.org/10.47672/ajce.2725 8 Kamaluddin (2021)

set of system calls at certain frequencies. However, a compromised container might exhibit

unusual or frequent system calls that could point to malware attempting to exploit the system

or gain unauthorized access.

Early Versions of Behavioral Monitoring Tools: Falco and AppArmor

Several behavioral monitoring tools [16] began to gain popularity within container security:

Falco

Made for containerized systems, Falco is an open-source, runtime security monitoring tool.

Using system calls, file accesses, and network activity, it seeks out unusual behavior. Falco can

spot possibly harmful behaviors including containers trying to access files or network resources

they shouldn't by always tracking container interactions with the host system. Highly flexible,

the tool can be set to identify particular harmful trends within the container environment.

AppArmor

While Falco focuses on behavioral detection, AppArmor offers policy-based enforcement. Its

security profiles can block containers from performing unauthorized actions, such as accessing

restricted directories or modifying kernel parameters. Though early versions lacked dynamic

behavioral insights, AppArmor’s integration with container runtimes like Docker and

Kubernetes adds an important layer of proactive defense by preventing known attack patterns

through pre-defined rules.

Figure 3: Bar Chart Comparing Overhead of Major Monitoring Tools

This graph would compare the resource overhead (e.g., CPU usage, memory consumption) of

popular container monitoring tools such as sysdig, auditd, Falco, and AppArmor. Monitoring

the overhead is important because it provides insight into how much resources are consumed

by each tool while detecting malware or anomalous behavior. A tool with higher overhead may

interfere with the performance of containerized applications, making it less suitable for

production environments.

Kernel Instrumentation Techniques: kprobes and eBPF

Kernel instrumentation tools provide deep visibility into the internals of containerized systems,

allowing for the detection of malicious activity at the kernel level. These techniques offer

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.4, Issue 4, pp 1-20, 2021 www.ajpojournals.org

https://doi.org/10.47672/ajce.2725 9 Kamaluddin (2021)

powerful monitoring capabilities but may have certain limitations when it comes to

performance and container awareness.

Kprobes

kprobes is a Linux kernel feature that allows dynamic instrumentation of almost any kernel

function. It enables developers and security analysts to insert probes at specific points in the

kernel and collect information when those functions are executed. In the context of container

security, kprobes can be used to trace container-related system calls, monitor file access, or

intercept privilege escalation attempts.

Strengths:

i. Flexible placement of probes in arbitrary kernel code.

ii. Minimal performance overhead when used sparingly.

iii. Valuable for debugging and low-level monitoring in research and forensic contexts.

Limitations:

i. Requires kernel-specific knowledge and careful configuration.

ii. Risk of destabilizing the system if improperly implemented.

iii. Not ideal for large-scale, real-time monitoring due to potential performance impact at

scale.

eBPF

eBPF extends the capabilities of kprobes by enabling the execution of sandboxed programs in

the kernel without modifying kernel code or inserting kernel modules. eBPF can hook into a

variety of kernel events, such as system calls, network packets, and tracepoints, making it a

flexible and efficient framework for real-time container monitoring.

Strengths:

i. Low-overhead, high-performance monitoring suitable for production environments.

ii. Enables complex logic and filtering within the kernel, reducing user-space processing

needs.

iii. Integrates well with modern observability stacks (e.g., Prometheus, Grafana) and security

tools (e.g., Cilium, Tracee).

Limitations:

i. Steep learning curve due to kernel constraints and eBPF programming model.

ii. Still evolving, with some features dependent on newer kernel versions.

iii. Security implications of running custom code in the kernel space must be carefully

managed.

The Table 3 summarizes the capabilities and limitations of key monitoring tools used in

container security. It provides an overview of the tool's granularity of monitoring, support for

the Linux kernel, and awareness of container-specific behaviors.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.4, Issue 4, pp 1-20, 2021 www.ajpojournals.org

https://doi.org/10.47672/ajce.2725 10 Kamaluddin (2021)

Table 3: Tool Matrix Capabilities, Granularity, Kernel Support, Container Awareness

Tool Capabilities Granularity Kernel

Support

Container

Awareness

Sysdig Real-time system

calls monitoring,

process tracking

Fine-grained

(per system call)

Kernel-level

support

Full container

awareness

Auditd Event auditing, file

system monitoring

Process-level Kernel-level

support

Partial container

awareness

Seccomp Securing system

calls, policy

enforcement

Fine-grained

(per system call)

Kernel-level

support

Partial container

awareness

Falco Runtime security,

syscall monitoring

Fine-grained

(per syscall, file

access)

Kernel-level

support

Full container

awareness

AppArmor Mandatory access

control, policy

enforcement

Process-level Kernel-level

support

Full container

awareness (with

configuration)

Kprobes Kernel-level

function tracing

Very fine-

grained

Kernel-level

support

Limited container

awareness

eBPF High-performance

monitoring, kernel

events

Fine-grained

(per event)

Kernel-level

support

Limited container

awareness

The behavioral monitoring techniques described in this section provide a foundation for

understanding the evolution of container security. By shifting from static analysis to more

dynamic, real-time monitoring tools, the security community has made significant strides in

detecting and mitigating threats within containerized environments. These techniques are

critical in ensuring that containers remain secure as they continue to play a central role in

modern application deployment.

Fine-Grained Behavioral Features Used in Detection

As malware techniques became increasingly evasive and polymorphic in containerized

environments, the need for fine-grained behavioral detection mechanisms grew significantly

[17]. Traditional binary-based or static approaches were limited in their ability to detect novel

malware variants, especially in ephemeral and resource-constrained container environments.

Researchers and security systems started to create detection models able to detect subtle,

aberrant behaviors suggestive of compromise by concentrating on exact behavioral indicators

down to system calls, memory use, and access patterns. Key behavioral traits applied and their

significance in container malware detection are described in this part.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.4, Issue 4, pp 1-20, 2021 www.ajpojournals.org

https://doi.org/10.47672/ajce.2725 11 Kamaluddin (2021)

Syscall Sequences (n-gram Modeling & LSTM Approaches)

System calls sequences serve as a low-level yet powerful feature for behavior modeling. Since

all high-level actions by applications ultimately translate to sequences of syscalls, they provide

a reliable lens through which malicious activity can be observed.

● Among the first methods to describe normal and anomalous syscall behavior were n-

gram models, which record fixed-length sequences of syscalls—e.g., trigrams or 5-

grams. Although basic, these statistical models were good in spotting deviations from

accepted standards of performance.

● LSTM (Long Short-Term Memory) models, a type of recurrent neural network (RNN),

began gaining traction before 2021 for their ability to model longer temporal

dependencies in syscall patterns. LSTMs showed promise in distinguishing between

benign and malicious container behavior without requiring prior knowledge of specific

malware signatures.

Figure 4: Example syscall trace showing benign vs. malicious pattern

This figure would visualize syscall sequences during normal operation (e.g., standard

input/output, file read/write) compared with a trace collected during a known attack (e.g.,

privilege escalation, kernel exploit), highlighting the divergence in call patterns.

File Access Patterns & Entropy Detection

Malware often interacts with files in unusual ways scanning directories, modifying

configurations, or writing encrypted payloads. Behavioral monitoring of file access can reveal

several red flags:

● Frequent access to sensitive files (e.g., /etc/passwd, /var/log)

● High-entropy writes, which might be a sign of payload obfuscation or cryptographic

techniques used in ransomware

● Unusual read/write patterns such as recursive file access or unexpected access

timestamps

These indicators were commonly used to flag unauthorized activity in container instances

where ephemeral storage might otherwise make forensics difficult.

Network Socket Creation & DNS Call Frequency

Another crucial component of behavior-based detection is network behavior monitoring.

Numerous malware variations try lateral movement, exfiltrate data via DNS, or establish

outgoing connections to command-and-control (C2) servers.

● Excessive or rapid DNS resolution attempts can be an indicator of domain generation

algorithms (DGAs) commonly used by malware.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.4, Issue 4, pp 1-20, 2021 www.ajpojournals.org

https://doi.org/10.47672/ajce.2725 12 Kamaluddin (2021)

● Backdoors or reverse shell activity may be indicated by repeated or suspicious socket

creations, particularly to unusual ports or public IPs.

● Correlating network activity with process and user identity adds context that improves

detection fidelity in multi-tenant container clusters.

Memory Usage Spikes & Fork-Bomb Heuristics

Containers are typically subject to strict resource quotas. A sudden spike in memory usage or

an unexpected surge in child processes (e.g., via fork ()) can indicate malicious behavior such

as:

● Fork bombs, designed to overwhelm a host by recursively spawning processes

● Techniques for memory spraying that are used in exploits

● In-memory payload injection that circumvents disk-based detection

Behavioral baselining of resource use was a common pre-2021 approach, often integrated into

container orchestrators or sidecar monitoring agents.

Process Injection & Privilege Escalation Indicators

Advanced threats in containers sometimes attempt process injection (e.g., ptrace hijacking) or

escalation to root privileges, particularly in weakly isolated environments.

● Behavior-based signals included the use of ptrace, execve chains, or modifications to

/proc entries

● Lateral movement or breakout attempts were frequently preceded by abnormal parent-

child process relationships (e.g., nginx spawning a shell).

● Escalation attempts were correlated with changes in user ID (setuid(), setgid()) or

manipulation of container runtime flags

These features, while subtle, became essential in early behavior-based intrusion detection

systems (IDS) such as Falco and in customized eBPF security monitors.

Detection Algorithms and Models Used

As containerized environments gained popularity in the late 2010s, several machine learning–

based detection models were adapted and evaluated for malware detection [18]. These

algorithms many of which had been successful in earlier host-based or virtualized setups were

repurposed to handle container-specific behavioral telemetry such as syscall traces, network

activity, and resource usage patterns. However, the algorithms and models employed were

largely limited by their training data volume, architectural constraints, and inability to

generalize to the rapidly evolving threat landscape. This section highlights the core techniques

that dominated behavior-based detection, which have since been surpassed by more scalable,

container-native solutions.

Decision Trees, Random Forests, and SVMs: Non–Deep Learning ML Models

Traditional supervised learning models such as Decision Trees, Random Forests, and Support

Vector Machines (SVMs) were among the earliest ML techniques applied to system behavior

classification tasks [19].

● Because of their interpretability and low processing demands, decision trees and

random forests were preferred. Syscall frequency patterns or categorical features (like

file write flags or network port access) could be mapped to benign or malicious labels

using these models.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.4, Issue 4, pp 1-20, 2021 www.ajpojournals.org

https://doi.org/10.47672/ajce.2725 13 Kamaluddin (2021)

● SVMs were applied for their ability to handle high-dimensional syscall vectors, often

using radial basis function (RBF) kernels.

Despite their usefulness in detecting known behavioral signatures, these models struggled with

generalization to new malware families and often required extensive feature engineering.

Hidden Markov Models (HMMs) and Clustering via K-Means

To model the sequential nature of syscalls and process behaviors, researchers experimented

with probabilistic sequence models and unsupervised clustering techniques [20].

● Hidden Markov Models (HMMs) were employed to represent typical syscall transitions

in benign applications and flag sequences with low likelihood scores.

● K-Means clustering was used to group similar behavioral traces, with anomalies

identified as low-density or distant samples from the main clusters.

These models, while innovative at the time, lacked the capacity to scale to highly dynamic

container workloads and were prone to high false positives in multi-tenant clusters.

Early LSTM-Based Detection

An important step toward deep learning-driven detection was the development of LSTM (Long

Short-Term Memory) networks. LSTMs were particularly well-suited to modeling syscall

streams and multivariate time-series data because they could learn temporal dependencies in

system behavior.

However, implementations had notable constraints:

● Training datasets were often small and lacked diversity across container types or

workloads.

● Models were typically trained offline and struggled to adapt in real-time container

orchestrations.

● Interpretability remained an issue, limiting operational adoption in SOC (Security

Operations Center) pipelines.

Still, LSTMs set the stage for future work in neural sequence modeling for malware detection.

Signature-Augmented Behavioral Detection (Hybrid Approaches)

Several systems relied on hybrid detection models that combined behavioral monitoring with

signature-based lookups:

● Signature engines were used to detect known malware families (e.g., via rule-based

systems like YARA or ClamAV).

● Static rules were combined with ML model anomaly scores (such as unexpected port

access or syscall outliers) to generate composite alerts.

While these hybrids improved detection rates for known threats, they were ultimately limited

by signature drift and inability to identify zero-day threats or behavioral mimicry.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.4, Issue 4, pp 1-20, 2021 www.ajpojournals.org

https://doi.org/10.47672/ajce.2725 14 Kamaluddin (2021)

Figure 5: ROC Curves of Obsolete Models Tested on Sample Datasets

The figure 5 could show comparative Receiver Operating Characteristic (ROC) curves of

models like SVM, Random Forest, LSTM, and HMM on benchmark behavioral datasets. It

would illustrate trade-offs between true positive rates and false positives, with older models

showing weaker AUC (Area Under Curve) scores.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.4, Issue 4, pp 1-20, 2021 www.ajpojournals.org

https://doi.org/10.47672/ajce.2725 15 Kamaluddin (2021)

Table: Summary of ML Models Used for Container Malware Detection

Model Type Approach Detection Strengths Limitations

Decision Trees /

Random Forests

Supervised,

interpretable

Fast, transparent logic

trees

Required manual features,

overfitting on small sets

SVM (RBF

Kernel)

Supervised,

nonlinear

Good for binary syscall

classification

Limited scalability, hard

to tune

HMM Probabilistic

sequence

Modeled syscall

transitions well

Poor generalization,

sensitive to noise

K-Means

Clustering

Unsupervised Helped flag outliers in

syscall patterns

High false positive rate,

no time-series modeling

LSTM (Early Use) Neural sequence

modeling

Captured long-range

syscall dependencies

Small training sets, black-

box nature

Hybrid (Signature

+ Behavior)

Rule-based +

ML

Effective for known

malware + anomalies

Poor zero-day coverage,

signature maintenance

Early models laid the foundation for container-native security, but their static assumptions and

limited context-awareness underscored the need for more scalable, adaptive approaches. This

gap has been addressed with technologies like eBPF, richer telemetry pipelines, and real-time

behavioral baselining. Modern deep learning methods—particularly CNNs and GNNs—offer

improved detection by leveraging complex container data. CNNs enable pattern recognition

from syscall and network activity streams, while GNNs model relationships between processes,

containers, and orchestration metadata, enabling context-aware and cross-container threat

detection. These models are better suited for identifying sophisticated behaviors missed by

earlier techniques.

Limitations of These Techniques in Modern Context

As the container ecosystem matured particularly with the rise of Kubernetes-based

orchestration and microservices architecture the detection techniques and models used began

to show clear limitations. While they provided early promise for identifying behavioral

anomalies in container workloads, they could not scale effectively or adapt to the increasing

complexity of cloud-native environments. This section examines the critical shortcomings of

these legacy approaches in the context of modern infrastructure demands.

Inefficiency in Cloud-Native & Kubernetes-Based Orchestration

Early detection tools were not designed with cloud-native principles in mind. Many solutions

assumed static container lifecycles, limited horizontal scaling, and minimal orchestration

dynamics [21].

● These tools lacked awareness of transient container lifespans, dynamic scaling, and

frequent image redeployments common in Kubernetes.

● Many models required full logs, complete traces, or centralized processing—unsuitable

for ephemeral, distributed, and large-scale container environments.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.4, Issue 4, pp 1-20, 2021 www.ajpojournals.org

https://doi.org/10.47672/ajce.2725 16 Kamaluddin (2021)

High False Positive Rates

Behavioral models from this era especially those relying on simple frequency or clustering

methods often produced high false positive rates when exposed to real-world workloads.

● Legitimate but rare workload behaviors (e.g., backup scripts, ephemeral processes)

were misclassified as malicious.

● The models produced noisy alerts because they lacked contextual awareness (such as

time-of-day patterns or container role) and adaptive baselining.

● Security teams faced alert fatigue and low signal-to-noise ratios, reducing trust in the

systems.

Lack of Cross-Container Correlation or Awareness

Most legacy behavioral tools focused on analyzing individual containers in isolation.

● They could not identify attack patterns that spanned multiple containers or pods, such

as lateral movement or shared volume exploits.

● There was no ability to track identity, context, or behavioral continuity across container

restarts, replicas, or service meshes.

● Without cross-container telemetry stitching, sophisticated threat campaigns evaded

detection by staying below per-container anomaly thresholds.

Inability to Detect Sophisticated APTs or Polymorphic Malware

Advanced Persistent Threats (APTs), polymorphic malware, and living-off-the-land techniques

require deeper behavioral inference and context-aware analytics.

● Legacy tools lacked memory introspection, process lineage analysis, or in-depth

runtime correlation to detect stealthy persistence techniques.

● Polymorphic code frequently used in evasive container malware escaped signature-

augmented models entirely.

● These tools failed to account for malware that adapts behavior based on environmental

signals (e.g., sandbox detection evasion)

 No Support for Runtime Context-Awareness

Modern container security requires embedding detection within runtime context accounting for

process ancestry, runtime flags, container metadata, and pod-level configurations.

● Models ignored key runtime parameters such as container labels, namespaces, cgroups

hierarchy, and deployment intent.

● Lack of integration with orchestration APIs (Kubernetes RBAC, service accounts,

network policies) meant that behavioral anomalies were assessed without

understanding user roles or policy violations.

● As a result, decisions were made in a vacuum, leading to poor detection fidelity.

Ethical and Legal Concerns in Multi-Tenant Environments

Behavioral telemetry collection in containerized infrastructures especially within shared or

multi-tenant clusters raises ethical and legal considerations.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.4, Issue 4, pp 1-20, 2021 www.ajpojournals.org

https://doi.org/10.47672/ajce.2725 17 Kamaluddin (2021)

● Monitoring tools that capture detailed system calls, file access patterns, or process

lineage may unintentionally expose sensitive data or user-specific behaviors, especially

in SaaS or cloud-hosted environments.

● Compliance with data privacy regulations such as GDPR, HIPAA, or CCPA becomes

challenging when behavioral logging is insufficiently scoped or lacks clear tenant

separation.

● Researchers and practitioners must weigh detection accuracy against user privacy,

ensuring that telemetry collection aligns with least privilege principles and includes

opt-in policies or pseudonymization techniques where required.

Figure 6: Transition from Traditional to Modern Behavioral Detection Architectures

This figure 6 contrasts outdated behavioral detection methods with modern, container-native

approaches. It emphasizes how contemporary architectures address the limitations of legacy

tools by enabling real-time, scalable, and context-rich threat detection across dynamic

containerized workloads.

CONCLUSION AND RECOMMENDATION

Conclusion

This research has explored the landscape of fine-grained behavioral malware detection

techniques as applied to containerized environments. At the time, detection strategies centered

on low-level system telemetry such as syscall sequences, process trees, and file access behavior

paired with lightweight machine learning models. By providing more flexibility to new threats

within container runtimes, these tools and approaches closed a significant gap left by

conventional signature-based detection

Despite their innovation at the time, the approaches examined in this study demonstrated

several limitations when viewed through the lens of contemporary cloud-native infrastructure.

Techniques based on static syscall modeling or isolated container analysis struggled with

scalability and precision. They frequently produced high false positives, lacked context-

awareness (e.g., orchestrator metadata or cross-container relationships), and failed to detect

stealthy or polymorphic malware such as Advanced Persistent Threats (APTs). Although tools

like Sysdig and Auditd provided useful observability, their applicability in production

workloads was limited by their quantifiable performance overhead.

Nonetheless, these early techniques laid a vital foundation. They contributed to a broader shift

from signature-based toward behavior-based security models and fostered the development of

real-time, fine-grained monitoring paradigms that informed the next generation of tools. The

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.4, Issue 4, pp 1-20, 2021 www.ajpojournals.org

https://doi.org/10.47672/ajce.2725 18 Kamaluddin (2021)

historical techniques covered in this research now serve as an important benchmark against

which modern solutions can be measured.

Recommendations

Looking forward, future research should focus on integrating high-fidelity behavioral signals

with context-rich runtime environments, leveraging technologies like extended Berkeley

Packet Filter (eBPF), Graph Neural Networks (GNNs), and orchestrator-level visibility. While

these advancements are outside the scope of this paper, they directly address the drawbacks

and achievements of the methods discussed here. Thus, understanding these outdated methods

is not merely of archival value it is critical to shaping the trajectory of container security in the

years ahead.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.4, Issue 4, pp 1-20, 2021 www.ajpojournals.org

https://doi.org/10.47672/ajce.2725 19 Kamaluddin (2021)

References

[1] J. Watada, et al., "Emerging trends, techniques and open issues of containerization: A

review," IEEE Access, vol. 7, pp. 152443–152472, 2019

[2] Y. Vlasov, N. Khrystenko, and D. Uzun, "Analysis of Modern Continuous

Integration/Deployment Workflows Based on Virtualization Tools and

Containerization Techniques," in Integrated Computer Technologies in Mechanical

Engineering: Synergetic Engineering, Cham: Springer International Publishing, 2020.

[3] T. Siddiqui, S. A. Siddiqui, and N. A. Khan, "Comprehensive analysis of container

technology," in Proc. 2019 4th Int. Conf. Information Systems and Computer Networks

(ISCON), Mathura, India, 2019.

[4] S. Sultan, I. Ahmad, and T. Dimitriou, "Container security: Issues, challenges, and the road

ahead," IEEE Access, vol. 7, pp. 52976–52996, 2019.

[5] H. S. Galal, Y. B. Mahdy, and M. A. Atiea, "Behavior-based features model for malware

detection," J. Comput. Virol. Hacking Tech., vol. 12, pp. 59–67, 2016.

[6] A. Gómez Ramírez, Deep learning and isolation-based security for intrusion detection and

prevention in grid computing, Ph.D. dissertation, Frankfurt U., 2018.

[7] A. Samir, et al., "Anomaly detection and analysis for reliability management clustered

container architectures," Int. J. Adv. Syst. Meas., vol. 12, no. 3, pp. 247–264, 2020.

[8] A. Khan, "Key characteristics of a container orchestration platform to enable a modern

application," IEEE Cloud Comput., vol. 4, no. 5, pp. 42–48, 2017.

[9] M. Pearce, S. Zeadally, and R. Hunt, "Virtualization: Issues, security threats, and solutions,"

ACM Comput. Surv., vol. 45, no. 2, pp. 1–39, 2013.

[10] G. Suarez-Tangil, et al., "Evolution, detection and analysis of malware for smart devices,"

IEEE Commun. Surveys Tuts., vol. 16, no. 2, pp. 961–987, 2013.

[11] Ö. A. Aslan and R. Samet, "A comprehensive review on malware detection approaches,"

IEEE Access, vol. 8, pp. 6249–6271, 2020.

[12] S. Talukder, "Tools and techniques for malware detection and analysis," arXiv preprint

arXiv:2002.06819, 2020.

[13] S. M. Jain, Linux Containers and Virtualization: A Kernel Perspective, 2020.

[14] A. Simioni, "Implementation and evaluation of a container-based software architecture,"

M.S. thesis, 2017.

[15] S. M. Varghese and K. P. Jacob, "Process profiling using frequencies of system calls," in

Proc. 2nd Int. Conf. Availability, Reliability and Security (ARES), Vienna, Austria,

2007.

[16] H. Gantikow, et al., "Rule-based security monitoring of containerized environments," in

Proc. Int. Conf. Cloud Computing and Services Science, Cham: Springer International

Publishing, 2019.

[17] O. Or-Meir, et al., "Dynamic malware analysis in the modern era—A state of the art

survey," ACM Comput. Surv., vol. 52, no. 5, pp. 1–48, 2019.

[18] F. Liang, et al., "Machine learning for security and the internet of things: the good, the

bad, and the ugly," IEEE Access, vol. 7, pp. 158126–158147, 2019

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.4, Issue 4, pp 1-20, 2021 www.ajpojournals.org

https://doi.org/10.47672/ajce.2725 20 Kamaluddin (2021)

[19] V. Rodriguez-Galiano, et al., "Machine learning predictive models for mineral

prospectivity: An evaluation of neural networks, random forest, regression trees and

support vector machines," Ore Geol. Rev., vol. 71, pp. 804–818, 2015.

[20] N. Pant and R. Elmasri, "Detecting meaningful places and predicting locations using

varied k-means and hidden Markov model," in Proc. 17th SIAM Int. Conf. Data Mining

(SDM), 3rd Int. Workshop on ML Methods for Recommender Systems, Houston, TX,

USA, 2017

[21] Z. Zhong and R. Buyya, "A cost-efficient container orchestration strategy in kubernetes-

based cloud computing infrastructures with heterogeneous resources," ACM Trans.

Internet Technol. (TOIT), vol. 20, no. 2, pp. 1–24, 2020.

License

Copyright (c) 2021 Khaja Kamaluddin

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work

simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that

allows others to share the work with an acknowledgment of the work's authorship and initial

publication in this journal.

http://www.ajpojournals.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

