

Enhanced Attacks Detection and Mitigation in

Software Defined Networks

 Suh Charles Forbacha, Maah Kelvin Kinteh & Eng. Mohamadou

Hamza

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 40 Forbacha, et al. (2024)

Enhanced Attacks Detection and Mitigation in Software Defined

Networks

Suh Charles Forbacha1*, Maah Kelvin Kinteh2 & Eng. Mohamadou Hamza3
1*College of Technology, The University of Bamenda, Bambili, Cameroon

Author’s Email: s.forbacha@gmail.com
2National Higher Polytechnic Institute, The University of Bamenda, Bambili, Cameroon

3Zango Enterprises, Bamenda, Cameroon

Article history

Submitted 16.04.2024 Revised Version Received 20.05.2024 Accepted 26.06.2024

Abstract

Purpose: The main aim of this research

project was to develop a security simulation

and mitigation mechanism for Software

Defined Networking (SDN) deploying

machine learning algorithms.

Materials and Methods: Applied research

method was used whereby attacks were

initially detected and classified using machine

learning algorithms on the CiCDDoS2019

dataset; next a SDN virtual network was

created through simulation in Mininet plus

captured network data from the environment

and finally applied machine learning

algorithms to detect and mitigate the attacks in

case of an attack occurrence.

Findings: Results showed higher rates of

attack detection and lower false positive rates.

Hence our system could be used in real life

environments for attack detection and

mitigation. However, the conditions and

networks traffic would be different per the

network configurations and tasks performed in

the network environment

Implications to Theory, Practice and Policy:
Based on the findings and knowledge

acquired, some key recommendations for

successful implementation of an Enhanced

attack and detection scheme in SDN include:

Use deep learning and ensemble learning as

the system will have an awareness of its state

and hence have better accuracy and less false

alarm rates, conducting thorough feature

analysis and selection based on statistical

techniques, correlation analysis, and domain

knowledge, experimenting with multiple

algorithms like deep neural networks,

ensemble learning algorithms, optimizing the

system to minimize computational overhead

and ensure real-time processing, performing

the study on a real world sdn environment to

ensure proper knowledge of the data flow

patterns in real world environments and use

multiple datasets in the implementation of the

system.

Keywords: SDNs, Network Management,

Intrusion Detection, Prevention System,

Cyber Security, Security Attacks, Attack

Mitigation, Machine Learning, Real Time

http://www.ajpojournals.org/
0009-0002-4299-7382
https://doi.org/10.47672/ajce.2120

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 41 Forbacha, et al. (2024)

1.0 INTRODUCTION

As computer networks are increasingly becoming faster and being more efficient, there has been an

increasing demand for faster and more efficient networks in the past decade with many high-tech

companies investing and using new network types; Software defined networking. Software-defined

networking (SDN) is an approach to networking that abstracts the network control plane from

underlying physical infrastructure, allowing network administrators to centrally manage and

configure network resources through software (Farhady et al., 2015).

In a traditional network, network devices such as routers and switches handle both the data plane

(forwarding and routing of network traffic) and the control plane (management of network

configuration and policies) (Chen et al., 1993). In an SDN, control plane is separated from data

plane and managed by a centralized software controller. The control plane refers to the network

architecture component that defines the traffic routing and network topology while the data plane is

the network architecture layer that physically handles the traffic based on the configurations rendered

from the control plane. Current legacy networks have evolved into challenging monsters that are

difficult to manage and lack ability to scale to today’s needs of mega data centers. Software defined

networking will facilitate their decoupling by separating the data, control and management planes.

SDN has enhanced the programmability of networking switches by providing application

programming interfaces (Jammal al., 2014).

Software-defined networking has led to significant cost reduction for consumers because devices like

load balancers and firewalls implemented in current legacy networks which cost thousands of dollars

are implemented as software at a fraction of the cost. SDN provides the ability to apply network

virtualization based on for example on layer two or layer three features. Virtualization enables the

sharing of the same network resources which helps in overall reduction of costs in large networks

(Casado et al., 2007).

Software Defined Networks (SDNs) have become increasingly popular due to their flexibility and

ease of management. However, the centralized control of SDNs also poses security risks, such as

malicious attacks on the control plane and data plane, causing traffic slowdowns, data theft, and other

security breaches (Hande et al., 2019). The market size for Software defined network is expected to

reach a value of $100 billion by the year 2025 (Cameron Magazine, 2021), with this huge market cap

and investment in this industrial it is important to have the best security measures in place for such

networks.

Distributed Denial of Service (DDoS) is a set of frequent cyber-attacks used against public servers.

Because DDoS attacks can be launched remotely and reflected by legitimated users on networks, it

is hard for victims to detect and prevent. Kumar (2020) stated that, keeping computer network safe is

a task for organizations. Complex DDoS attacks are the primary vectors for causing damage to the

networks, data and, availability of services. With the development of Big Data, Internet of things

(IoT) and social networking applications, the network traffic has increased many folds and so are the

network threats.

Traditional Intrusion Detection Systems and Intrusion Prevention systems are not the most

appropriate security mechanisms to identity advanced attacks and per say Zero-Day attacks.

Therefore, there is a need to devise new strategies, which can go up against these threats. The other

real obstacle in utilizing existing strategies is ‘human intervention’, which is required at present for

threat recognition. With the establishment of a large campus-wide area network, internet facilities,

Wi-Fi attack-surfaces have multiplied (Farina et al., 2015) One of the well-known applications that

use the rule-based approach is Snort, a packet filter tool developed by Roesh. This tool can filter

packets by analyzing many characteristics of each packet that flows on a server or host. For example,

it can filter by source IP, destination IP, port number, protocols, packet size and content. Many

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 42 Forbacha, et al. (2024)

researchers have enhanced this tool or integrated this tool into their design. Because Snort filters the

packets using rules, the false alarm rate is low (Roesh, 1999). Snort is therefore a foremost Open

Source Intrusion Prevention System (IPS) in the world. Snort IPS utilises a series of rules that help

define malicious network activity and deploys those rules to find packets that match against them and

generates alerts for users.

Machine learning algorithms have also shown great potential in cybersecurity applications, including

attack detection and threat mitigation. Machine learning techniques have equally been deployed to

examine huge datasets to find patterns and forecast the probability of an attack and create a mitigation

model for the attack. (Junhong, 2020). The Security industry is experiencing tremendous attacks and

needs to respond with robust mechanisms that protected them from such cyber-attacks

Problem Statement

Security is a pertinent issue in networks because if one gets in the position of control of computer

networks, it means they can access nearly all other resources at a company’s disposal (Garg et al.,

2019). The main problem addressed in this research is the lack of effective security mechanisms in

Software Defined Networks that can detect and mitigate security threats in real-time. Existing security

solutions are often static and unable to adapt to dynamic changes in the network environment.

The security of software-defined networks (SDNs) can be compromised by various types of attacks,

such as distributed denial-of-service (DDoS) attacks, intrusion attempts, and malware infections.

Traditional security mechanisms such as firewalls and intrusion detection systems may not be

effective in detecting and mitigating these attacks, especially in large-scale networks (Sahay et al.,

2017). This research was aimed at providing a security and mitigation framework that uses machine

learning to provide a dynamic and adaptable system for the detection of Distributed Denial of Service

attack in Software Define Networks. Despite the increasing benefits of Software Defined Networking

and it continues application and implementations in various big enterprises, it possesses some security

risks. This research work aims to addressing the security challenges faced by Software Defined

networking environment and providing solutions by developing machine learning models for attack

detection and attack mitigation with higher accuracy and less false positive rates.

i. To reduce the total damage an attack on a network can cause

ii. To detect attacks in real time before an attacker can have total control of a system

iii. To use new means to train a controller to detect an attack from normal bulk traffic and attacks

Objectives and Research Questions

 The main objective of this research was to develop a security simulation and mitigation mechanism

for Software Defined Networking deploying machine learning algorithms. In order to accomplish our

main objective, the following specific objectives were used.

i. To identify the security threats in Software Defined Networking and their impact on the

network.

ii. To develop a Network to mimics the attacks and have them mitigated

iii. To develop a simulation framework to generate realistic network traffic and security threats

iv. To train machine learning models to detect security threats in the simulated network traffic.

v. To develop a mitigation framework to respond to the detected security threats and potentially

stop the attack.

In this research paper, the researchers explored vulnerabilities in software-defined networks focusing

on a single point of failure - the controller since it is the brain of the SDN.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 43 Forbacha, et al. (2024)

Main Research Question

How can the researcher develop a mechanism that can simulate various attacks, detect such attacks

and have a mitigation means in real time for Software Define Networks using machine learning

algorithms?

Specific Research Questions

i. How can an attack be simulated in software defined networking environment?

ii. How can network traffic be developed to mimic both normal and malicious traffic?

iii. How can machine learning techniques accurately detect and classify different types of attacks

in Software Defined Networks, such as distributed denial-of-service (DDoS) attacks, and

control plane attacks in real time?

iv. What mechanism can be developed to mitigate such attacks in real time and potentially stop

the attack?

Software Defined Networking

Software Defined Networking (SDN) is networking architecture approach which enables the

control and management of network using software applications. Through SDN networking, the

behavior of entire network and its devices are programmed in a centrally controlled manner through

software applications using open Application Programming Interfaces (API). SDN improves

performance through network virtualization. In SDN software-controlled applications or

Application Programming Interfaces work as basis of complete network management that may be

directing traffic on network or to communicate with underlying hardware infrastructure. So, in

simple terms, we can say SDN can create virtual network or it can control traditional network with

the help of software (Yang et al., 2020).

Software-Defined Networking is often described as the ‘End of Networking’ these days William et

al. (2018). This rapidly growing technology has been a huge success owing to the separation of control

plane from the data plane of the networking devices. The control plane allows management of the

entire network from a global point of view, thereby eliminating the need of a separate controller in

every networking device. The data plane, consisting of the switching elements allows forwarding of

network traffic based on rules programmed by the applications running on top of the controller. This

significant advancement in the field of networking has helped accelerate service delivery and provide

more agility in provisioning both virtual and physical network devices from a central location. The

centralized controller was responsible for enforcing global policy whereas the Switches simply

forwarded packets based on rules in a flow table. This allowed data and control plane to be separated

thereby allowing more programmability. The networking world could sense the arrival of SDN just

after the Ethane architecture was proposed (Casado et al., 2007)

Figure 1 below illustrates the architecture of Software-Defined Networking

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 44 Forbacha, et al. (2024)

Figure 1: SDN Architecture (Sangeeta, 2018)

Control plane takes up the role of global management of the network. It maintains global network

topology and instructs the data plane devices by providing them with flow instructions. The data plane

networking devices forward the traffic based on the flow rules installed in them. SDN uses

Northbound API to communicate with the applications and business logic present in the application

layer to help the network executives for traffic management service deployment. The controller uses

Southbound API (e.g. OpenFlow, NetConf) to establish a secure communication channel with one or

more SDN compatible switches for monitoring and controlling the traffic forwarding.

(Neuphane et al., 2018) noted that SDN was born out of the need to break the vertical integration of

the network equipment. Its idea was to separate the control from the data plane and OpenFlow (OF)

protocol, proposed in 2008, which leveraged its development. It also allows defining network

functions (e.g., routing, firewall, load balancing, bandwidth optimization) as software applications

that can run on top of the control plane. The architecture has three parts: data plane (composed of

switches), the control plane (composed of one or more controllers), and application plane (composed

of one or more network applications). This new paradigm represents a solution to several problems

of traditional networks, such as manageability, configuration, scalability, and security. Under this

perspective, a clear advantage for security with SDN is the ability to gather traffic information without

additional elements. This is due to the centralized role of the controller, which communicates with

the switches in the data plane.

There are two trends currently in SDN: those focusing on the dynamic virtual machine migration and

use of hypervisors as well as techniques such as encapsulation and tunneling and those that are

striving to accomplish software control of the network by using the OpenFlow protocol to manipulate

the flow tables in switches (Metzler, 2014). VMware and Open Networking Foundation are for

centralization of network control and don’t see the role of hardware for some network function in

data centers while on the other hand is Cisco which supports both trends.

In 2017, during an Open networking summit, Google presented its espresso SDN pillar which is

extending its SDN to the edge of the public internet and as a result making its cloud 25% faster, more

available, and cost-effective (Hardesty, 2017). Hardware SDN device vendors include Cisco, HP,

Jupiter, Big Switch, and Netgear. Open Networking Foundation (ONF), the organization promoting

the adoption and implementation of SDN as an open standard developed the OpenFlow standard.

OpenFlow management and configuration protocol standard a first of its kind is a vendor-neutral

interface between the control layer and data layer of the SDN architecture (open networking

foundation).

Software-defined networking architecture is dynamic, manageable, cost-effective, and adaptable.

These qualities make it suitable for today’s bandwidth-hogging data centers that are in need of a

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 45 Forbacha, et al. (2024)

flexible solution that can put resources where they are needed. An SDN architecture is considered to

be:

i. Programmable- this is facilitated by the decoupling of control and the forwarding planes.

ii. Agile -This is brought about by the abstraction of the control plane from the forwarding plane

which gives network engineers freedom to make network-wide changes in traffic flow to meet

their current needs.

iii. Central management - SDN has the concept of a controller that has a network-wide view that

appears to all applications and policy engines as a single switch. This visibility makes network

management easier.

iv. Programmatically configured - SDN gives freedom to network engineers to configure,

manage, secure, and optimize network resources very quickly using dynamic custom SDN

programs that are vendor independent and can be written by themselves.

In SDN, a northbound interface is an application programming interface (API) or protocol that

permits a lower-level network component to communicate with a higher-level or more central

component, while -- conversely -- a southbound interface allows a higher-level component to send

commands to lower-level network components. Northbound and southbound interfaces are most

associated with software-defined networking (SDN), but can also be used in any system that uses a

hub-and-spoke or controller-and-nodes architecture. North and south in this context can be construed

of as on a map. The north is on the top and south on the bottom of the diagram. The higher-level

elements control the lower-level ones. Examples of southbound APIs include OpenFlow, CISCO,

OpFlex while those of nouthbound include.

Controllers

Controllers are the brain of a software-defined network that takes the control plane out of network

hardware and runs it as software. The controller facilitates easier integration, administration of

applications and automated management of networks. It has a global view of all forwarding devices

in the forwarding plane. It also has a way to communicate forwarding instructions to the forwarding

devices via the southbound API. It provides abstractions of the network to all the network applications

which makes developing of network applications easier as developers need only to know how to

interface with the controller. The controller is vital to SDN because it performs those control functions

that were previously done by switches. (Casado et al., 2007). If packets do not match against the flow

the tables, it is the controller that directs switches on the destination port or address of the packets

through the packet-out message. This is possible because the controller has an entire view of the

network. Some important controllers include:

Open Daylight

OpenDaylight is a community-led and industry-supported open source SDN project initiated by the

Linux Foundation with the sole aim to advance software-defined networking adoption and make a

strong case for network function virtualization. It aims to deliver readily deployable controller

without any need for other components. It supports add-ons that can add value to its uses. It is java

based, and some of its founding members are Big Switch, Cisco, Brocade, Ericson, HP, and IBM. It

deploys open standards, and as a result of working with open networking foundation, it readily

supports OpenFlow though its open to any future open protocols other than OpenFlow. It provides a

northbound API/Restful API which can be used to effortlessly develop applications network

applications. (Opendaylight Project).

http://www.ajpojournals.org/
https://www.techtarget.com/searchapparchitecture/definition/application-program-interface-API
https://www.techtarget.com/searchnetworking/definition/protocol
https://www.techtarget.com/searchnetworking/definition/software-defined-networking-SDN

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 46 Forbacha, et al. (2024)

Figure 2: Open Daylight Architecture (Gonzalez, 2017)

Floodlight Controller

It is a Java based open source enterprise controller developed by Big Switch. It is easy to use, has a

large community of users thus highly likely to get help. It’s easy to use and easy to set it up because

of the few dependencies. It’s multithreaded therefore has high performance, it supports OpenStack

making it easily deployable in cloud computing scenario. It also supports both Open Flow and non-

Open Flow switches hence highly applicable in every network scenario (Project Floodlight)

Figure 3: Floodlight Architecture (Jafarian et al., 2020)

Pox Controller

Pox is a python based open source software-defined networking controller which is very popular for

rapid prototyping. It comes with components such as a hub, a layer three switch component, topology

discovery and even a spanning tree component which all contribute towards rapid prototyping.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 47 Forbacha, et al. (2024)

Figure 4: Pox Controller Architecture (Kaur et al., 2014)

RYU Controller

Ryu (means flow in Japanese) is a component-based software defined networking framework. Ryu

provides software components with well-defined API that make it easy for developers to create new

network management and control applications. Ryu supports various protocols for managing network

devices, such as Openflow, Netconf, OF-config.

Figure 5: RYU Controller Architecture Author (Islam et al., 2020)

Secure Channel

The secure channel facilitates the interaction between the controller and the OpenFlow switch. It

enables the controller to be able to configure and manage the switch by receiving events from the

switch and facilitating sending of packets out of the switch. It uses TLS protocol for secure

communication. The protocol is the lifeline of an SDN network because if it the connection fails, the

packets which don’t match with the switch flow table will not be sent to the controller. If the switch

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 48 Forbacha, et al. (2024)

cannot establish a link to the backup controllers, it will fall into the fail secure mode, and all packets

that do not match against flow entries are dropped instantly.

Figure 6: Secure Channel Architecture (Islam et al., 2020)

Southbound Interface

 The controller communicates with network devices via the southbound API. The API is used to

transmit information such as packet handling instructions, notifications on status changes, e.g., if

some devices or links are up or down and statistics information such as flow counters or aggregate

statistics. Open Flow is the most common protocol used in the SDN.

Open Flow

This is the standardized communications protocol that facilitates interaction between the control plane

and the forwarding plane. It is the southbound API for software defined networks. It enables network

programmers to modify the behavior of switches and routers through writing scripts that run in the

controller. Open Flow protocol allows direct access and manipulation of forwarding plane devices

such as switches and routers. Other than Open Flow other important SDN protocols include:

i. Border gateway protocol for hybrid SDN.

ii. NETCONF which is mandatory for configuring Open flow enabled devices.

iii. MPLS-TP a transport profile for multiprotocol label switching used as a network layer

technology in transport networks.

iv. Open v-Switch Database Management Protocol (OVSDB) - an Open Flow configuration

protocol for managing open v-Switch implementations in SDN.

v. Extensible Messaging and Presence Protocol (XMPP) which is used for messaging and online

presence detection all in real time

Open Flow Messages

They facilitate communication between the controller and switches. Open flow messages also lead to

particular events being invoked. Some of the messages include:

i. Features request: It’s sent by the controller to the switch. It is composed of just the Open Flow

header.

ii. Features reply: The switch replies to the ofpt_features_request by the controller using this

message.

iii. Packet out: The controller sends this message to the switch instructing it to send a packet or

enqueue it or even discard it. Its attributes include buffer_id, in_port, actions and the data

(bytes).

iv. Flow modification message: It’s a message with instructions for modifying the flow table.

The crucial fields in flow modification message are hard_timeout, and idle_timeout in that

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 49 Forbacha, et al. (2024)

they determine how fast flows expire. These fields can be used to write flows or delete flows

that are suspect. It’s sent by the controller to the switch.

v. Port modification message It’s used to modify the behavior of physical ports.

vi. Statistics messages- Flow statistics messages include:

vii. Individual Flow Statistics-Individual flow stats.

viii. Aggregate Flow Statistics- Contains multiple flows statistics.

ix. Table Statistics- Containstable information.

x. Port Statistics- Contains physical statistics.

xi. Packet-In Message The packet-in message is sent from the switch to the controller. It’s active

when packets arrive in the datapath or switch and don’t match all fields thus sent to the

controller to determine appropriate actions to be performed on the packets. The actions

include to forward the packet to a particular port, to drop the packet or modify the packet

headers.

xii. Flow Removed Message Flow Removed message is used by the datapath/switch to inform the

controller that a flow has been removed.

Northbound API

 SDN applications include load balancers, firewalls, security applications, or applications like

OpenStack that operate in cloud services or in the networks. The northbound API provides network

control information to these applications that have very high instance abstractions of the network.

The value of SDN is enhanced by the availability of the northbound API on top of which the SDN

applications will be developed otherwise the control plane, and forwarding plane are doing the same

things. SDN has the upper hand because, with the centralized view of the network by the controller,

all control information is in one place and is made available via an API. (sdxcentral.com, 2023)

Security Vulnerabilities in Software Defined Networking (SDN)

SDN has numerous applicability in current networks and future networks such as 5G networks. SDN

is being used for cloud networking and gateway control. However, SDN security faces a lot of threats

from malicious applications, attacks from the forwarding plane as well as attacks from the control

network through the northbound APIs in a cloud computing environment (Schneider, 2015).

The centralized view of the network is also a single point of attack and failure. The southbound API

is also prone to attacks that can compromise its availability as well as performance (Lim, 2015).

Despite the advantage of programmability and the ability to manage packet forwarding and policy

application, SDN security is considered a crucial issue as noted by Lim (2015). Due to SDN infancy

and inability to enforce security on a physical topology, an SDN attacker can identify targets, modify

content, conceal from intrusion detection systems, attack servers, and monitor traffic leaving SDN

operators exposed. Lim (2015) also points out that other factors such as the use of Transport Layer

Security (TLS) for encryption and authentication can leave an SDN network susceptible. Lim futher

noted that the possibility of controller flooding and ability to impersonate an OpenFlow switch is a

real security headache as is the availability of debugging ports that are not encrypted thus can be used

to take control of the switch. There are several vulnerabilities in the SDN ecosystem.

Hinden (2014) noted that the biggest threat to SDN environment is compromising of the controller

because if the controller is compromised, then the entire network is compromised. Effects of SDN

controller being compromised include controller subverting new flows, ability to launch a man in the

middle attacks, ability to modify content on the network, monitoring of traffic and sending traffic to

compromised nodes inadvertently (Hinden, 2014).

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 50 Forbacha, et al. (2024)

In addition to major vulnerability in Software-Defined networking, are the following vulnerabilities:

Configuration vulnerabilities: These vulnerabilities are related to the incorrect configuration of

network devices, such as firewalls, routers, switches and servers. For instance, a misconfigured

firewall may allow an attacker to access internal resources.

Software vulnerabilities: These are security vulnerabilities in software that can be exploited by

attackers. Examples include security loop holes in operating systems, web browsers, productivity

applications and web applications. Attackers takes advantages of such instances to compromise a

computer network.

Protocol vulnerabilities: These vulnerabilities are related to security loop holes in the communication

protocols used by computer systems.

Physical vulnerabilities: These vulnerabilities are related to physical equipment used in computer

networks, such as network cables, switches, routers and servers. Examples include security flaws in

security locks, encryption keys and surge protectors.

Human vulnerabilities: These vulnerabilities are related to human behaviour that can compromise the

security of computer networks. Examples include reusing passwords, opening phishing emails,

downloading malware and sharing sensitive information.

Network Attacks

An attack is defined as a malicious interaction designed to violate one or more security properties. It

is an external fault created with the intention of causing harm, including attacks launched by

automatic tools. These include denial of service attacks (DoS), password attacks, man-in-the-middle

attack, computer virus and social engineering which are but a few to be stated.

Distributed Denial of Service (DDoS)

A distributed denial-of-service (DDoS) attack is a malicious attempt to disrupt the normal traffic of

a targeted server, service, or network by overwhelming the target or its surrounding infrastructure

with a flood of internet traffic. DDoS attacks achieve effectiveness by utilizing multiple compromised

computer systems as sources of attack traffic. DDoS attacks are considered one of the most common

threats nowadays, posing critical danger to network services due to their ease in carrying out and

compromising the availability of services in seconds. As analyzed by recent reports, DDoS attacks

have grown rapidly over the last several years, which has caused significant financial losses to the

business. The difficulty in locating the assailant provided a considerable boost to the attack's efficacy.

For instance, the Mirai botnet attack in 2016 affected network availability over the globe, which

brought down a large portion of the Internet (Kolias et al., 2017).

In the year 2018, GitHub servers were targeted by the largest-ever DDoS attack. In another case, the

attack using application layer protocol produced 129 million requests per second and achieved a total

traffic level of 1.35 Tbps sent in the attack, which followed the severe attack. (The Guardian, 2023)

A common technique used to perform DDoS attacks is IP spoofing. Spoofed (fake) IP is used for the

requests, and the destination host machine tries to send a response to every single request. This results

in response being sent to almost every address in the IP pool. With the proliferation DDoS attacks in

a number of countries, the need for deploying a protective mechanism against the same has become

increasingly important.

Intrusion Detection System (IDS)

Intrusion detection is the process of monitoring network traffic or computer events to detect malicious

or unauthorized activities. Any device or software application whose main purpose is to perform

intrusion detection is an intrusion detection system. They function by analysing traffic and reporting

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 51 Forbacha, et al. (2024)

logs and cannot take any decision to block the attack (Mell, 2007). Some examples include: network-

base IDS, host-based IDS, application-based IDS, signature-based and anomaly-based IDS.

Intrusion Prevention System (IPS)

It is the act of extending the roles of an intrusion detection system to include the ability to block the

malicious unauthorized activities detected (Cisco Systems). Intrusion prevention involves deep

packet inspection which can alleviate different network attacks, worms, and viruses. some of the IPS

systems have advanced features such as real-time sandboxing and mitigation solutions, global threat

intelligence and intelligent security automation. IPS sits behind the firewall to complement it in

filtering out dangerous content (Simkin, 2020).

Actions by Intrusion prevention systems include:

i. Sending alarm to the administrator.

ii. Dropping Malicious packets.

iii. Blocking traffic from the source address.

iv. Resetting connection

Machine Learning

Machine learning (ML) is a branch of artificial intelligence that enables computers to learn from data

without being explicitly programmed. In network security, machine learning has been increasingly

used for attack detection and attack mitigation. Decision Tree (DT), K-Nearest Neighbor (KNN),

Artificial Neural Network (ANN), Support Vector Machine (SVM), K-Means Clustering, Fast

Learning Networks, Ensemble Methods which are but a few to be stated are the most popular ML

methods used for DDoS detection in SDN (Eliyan et al., 2021)

Developing a machine learning algorithm involves two specific steps: training and testing. Each

model has its own training techniques. This process and the design of machine learning model is

usually managed by a framework such as scikit-learn, Tensor Flow, Py-Torch, MATLAB or Weka.

The framework used has a strong impact on the optimization of the algorithm or the number of

available parameters. Machine learning models can perform many tasks, two of which are particularly

interesting for intrusion detection: classification and regression. Classification categorizes entries into

several classes, such as “normal” or “attack”, or even different families of attacks. Regression (also

called “prediction”) is used to determine continuous values, including a probability that an input is

an attack (Sarioguz, & Miser, 2024).

Machine learning can be classified as either supervised, unsupervised and reinforced learning.

Supervised Machine Learning

Supervised machine learning is applicable where the labels and feature of the training set are known

but need to be accurately predicted in other unlabeled data. These algorithms use data that is labeled

as for example ‘Anomaly or ‘Normal’ traffic as training data to make models which are used to predict

class instances in the test dataset. To test the efficiency of an algorithm, the predicted outcomes are

compared with real data (Le, 2016)

Unsupervised Learning

This type of machine learning involves algorithms that train on unlabelled data. The algorithm scans

through data sets looking for any meaningful connection. The data that algorithms train on as well as

the predictions or recommendations they output are predetermined.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 52 Forbacha, et al. (2024)

Semi-Supervised Learning

This approach to machine learning involves a mix of the two preceding types. Data scientists may

feed an algorithm mostly labelled training data, but the model is free to explore the data on its own

and develop its own understanding of the data set.

Performance Metrics in Machine Learning

Several metrics are used to describe the performance of a machine learning classifier

i. True Positive (TP) Attack records correctly classified as attack records.

ii. True Negative (TN) Benign records correctly classified as benign records.

iii. False Positive (FP) Normal records incorrectly classified as attack records.

iv. False Negative (FN) Attack records incorrectly classified as benign records.

v. Detection rate (or “true positive rate”, “recall”, “sensitivity”) is the proportion of attacks that

are correctly detected.

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝐹𝑁)

False positive rate (or “false alarm rate”) is the proportion of normal traffic incorrectly flagged as

attack.

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃)

 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑇𝑁) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃)

Accuracy is the fraction of correctly identified results (attack and normal traffic). In multiclass

classification, accuracy is equal to the Jaccard index, which is the size of the intersection divided by

the size the union of the label sets.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
T P + T N

 T P + T N + F P + F N

Precision (also called positive predictive value) is the proportion of identified attacks that are indeed

attacks.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃)

Recall (TPR) The proportion of correctly detected positive values.

𝑅𝑒𝑐𝑎𝑙𝑙 =
T P

 T P + F N

F1-score is the harmonic mean of precision and recall (previously called “detection rate”).

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Confusion Matrix a N × N Matrix that helps summarize how successful the model was in predicting

attacks, where N is the number of unique labels. Higher values across the primary diagonal indicate

better results.

 Learning Curve: A learning curve shows the effect of increasing the size of the training data on the

score of the model. It can be used to infer overfitting and bias in the training data.

ROC Curve a Receiver-Operating Characteristic (ROC) Curve shows the relation between the TPR

and FPR at varying classification thresholds. A steeper curve towards the y-axis represents better

detection by the model.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 53 Forbacha, et al. (2024)

Area Under the Curve (AUC) The Curve refers to the ROC Curve. The AUC is equal to the

probability that a classifier will rank a randomly chosen positive instance higher than a randomly

chosen negative one (Fawcett, 2020)

Related Works

A protocol-based network intrusion detection system was designed by Patil et al. (2018) to detect

DoS/DDoS attacks in networks. In this system, Incoming packets were distributed according to the

protocol and queued for additional processing. Relevant features were extracted, and protocol-

specific classifiers were applied on each packet to generate alerts and thus update the attack signature

database. This approach focused on detecting DoS/DDoS attack types. The main features that the

classifiers focused on were the types of protocols.

Modi et al. (2012) proposed a NIDS that integrated Naive Bayes classifier and Snort. In this

framework, Snort signature-based detection filtered the captured packets. The captured packets were

divided into two sets: intrusion packets and non-intrusion packets. The intrusion packets were logged

and denied by the system. Meanwhile, the non-intrusion packets were be preprocessed and fed into

the anomaly detection module. The anomaly detection module employed the Naive Bayes classifier

to further classify the non-intrusion packets into normal and intrusion packets. Once the packets were

classified as intrusions, they were logged and denied. Only when the packets are labelled as normal

can they be allowed to go to the system. The F-1 score tested on the KDD’99 dataset varies from

91.25% to 98.01%.

In another study carried out by Kousar et al. (2021), they discussed about the different machine

learning approaches which could be used with software defined network to detect and mitigate DDOS

traffic in a network. The authors demonstrated the implementation of four ML algorithms namely,

Multilayer perception MLP, Decision tree, Support vector machine(SVM) and random forest. These

ML algorithms were simulated using mininet. The results showed that random forest algorithms

achieved the best accuracy and decision tree algorithms gives the best processing time for the DDOS

attack detection. However, there were few drawbacks in the implementation to classify flow table

attack and bandwidth attack.

Shoeb and Chithralekha (2016) proposed a solution intended to defend the control and data planes

from DDoS attacks, established a controller process priorities set according to the node trust level,

which was configured based on the node behaviour during regular business hours. The node worth

was calculated based on its activity. In high-demand situations, the controller is set up to ignore

requests from some nodes if the sum of their requests has already reached a predetermined maximum.

The controller makes a rule change to one with a shorter timeout, prompting a response from the

standard nodes as well.

Kokila et al. (2014) proposed a Support vector machine (SVM) classifiers for detecting DDoS attacks.

The SVM must be trained with historical data before it can reliably predict the behaviour of

unobserved traffic samples. When compared to other simulated methods, the SVM had superior

accuracy and fewer false positives. However, SVM is very dependent on the accuracy of the data

used to train the model. Sahay et al. (2017) proposed A DDoS security architecture with its primary

goal to reduce the amount of destructive Internet traffic. In order to identify network flows, the

customer end detection engine was the one that determines whether or not the traffic flow is

malicious. The status of the connection is communicated from the controller belonging to the

customer to the controller belonging to the service provider. A determination made by the ISP

controller directs that the harmful flow be sent to the filter so that it can be examined in further detail.

Nevertheless, the communication between controllers also needs to be secure.

In another study carried out by Myint Oo et al. (2019), they proposed an advanced support vector

machine based ML algorithm. In this study Advanced SVM algorithm collects data from feature

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 54 Forbacha, et al. (2024)

extraction stage and classifies parameters to predict DDoS attacks in SDN and noted that their

technique reduced the testing and training time for the machine learning algorithm to perform its

tasks. The implementation was done on opendaylight controller and simulation environment

implemented using mininet. The authors noted that Advanced SVM method had a detection accuarcy

of 97% with the fastest testing and training time.

A real-time machine learning approach was used by Amrish et al. (2022) whereby they collected data

features from network packet headers which were in turn classified using machine learning algorithms

such as decision trees, KNN, Random forest algorithms among others. They equally had a post

processing module that helped in dealing with false positives and outliers. It is worth noting that most

of these research projects from the related works addressed DDOS attacks in SDN but did not look

at other forms of attacks. This therefore provides research gaps that provides a platform for further

studies

2.0 MATERIALS AND METHODS

Research Method

In this paper, we utilised the Applied research method. This research method is aimed at solving a

particular problem or providing innovative solutions to pertinent issues that an individual, group or

society face. It is referred to as applied research because it involves a practical application of scientific

methods in solving a particular problem. When conducting applied research, the researchers took

extra care to identify a problem, develop a research hypothesis or research questions and went ahead

to test these hypotheses or answer these questions via an experimental implementation. In many cases,

this research approach employed empirical methods in order to solve practical problems. So this paper

deployed action research which is set at providing practical solutions to problems. Figure 7 depicts

the steps deployed.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 55 Forbacha, et al. (2024)

Figure 7: Methodology Flow Chart

Machine learning as a fast growing field is increasingly having a great impact in the implementation

of security schemes for attack detection and mitigation. Enhancing the act of attack detection and

mitigation in Software Defined Networks is of great importance to the effective functioning of

companies and the day to day running of business. In this research work, we focused on the

implementation of machine learning algorithms in the field of Cybersecurity, specifically in the new

domain of Software defined networking. Machine learning stages involve; Framing the problem,

collecting the data, Feature extraction, Model building, Model Evaluation and finally its

implementation.

Data Collection; Dataset for the Project

The dataset used in this paper is CiCDDoS2019 (Sharafaldin et al., 2019). This dataset was

downloaded from the Canadian institute for cybersecurity website (Canadian Institute for

Cybersecurity | UNB). This dataset contains only DDoS attacks and benign traffic. The creators

described it as a realistic cyber defense dataset. This dataset is a joint project of the Canadian

Communications Security Establishment (CSE) and The Canadian Institute for Cybersecurity (CIC).

CIC-DDoS 2019 is a new, high quality, synthetic dataset, providing both network traffic and log data.

In order to generate the dataset, networks of targeted machines were instantiated via AWS and

Feature Selection

Input CiCDDOS 2019

Dataset

Creation of our network flow

parameters

Training set

Splitting of Dataset

Testing set

Machine learning

algorithms

ML Detection model

Into SDN RYU

controller

http://www.ajpojournals.org/
https://www.unb.ca/cic/
https://www.unb.ca/cic/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 56 Forbacha, et al. (2024)

automated using CIC-BenignGenerator. These machines represented five departments of a target

organization, with 420 clients and 30 servers in total. Targeted machines were instrumented and then

systematically attacked using an attack infrastructure of 50 machines, with log data and network

traffic data captured and categorized. There is evidence of considerable effort on the part of the

dataset’s creators to enhance external validity through their choice of architecture, the design of both

target and attack networks, and their experimental design (Canadian Institute for Cybersecurity)

Benign

In this dataset, there are also benign data. The authors used CIC-BenignGenerator to imitate benign

background traffic based on the profiles of abstract behaviour of 25 users. Benign traffic is based on

HTTP, HTTPS, FTP, SSH, and email protocols. (Sharafaldin et al., 2019)

Attacks

Two genres of DDoS attacks are captured in this dataset. The first is Reflection-based DDoS,

including MSSQL, SSDP, NTP, TFTP, DNS, LDAP, NetBIOS and SNMP. In this type of attack, the

real attackers can hide behind the legitimated clients and utilize them in an attack. It makes the victims

more challenging to differentiate the users and attackers only by the source. These attacks are based

on TCP (MSSQL and SSDP), UDP (NTP and TFTP) or both (DNS, LDAP, NETBIOS and SNMP).

The second is Exploitation-based attacks, including SYN flood, UDP flood and UDP-Lag. This type

of attack will spoof the source IP address and sent a large number of packets to the victim server.

This will cause the victim resources exhausted. A testbed architecture to execute this is shown in

Figure 8

Figure 8: CiCDDoS2019 Testbed Architecture (Sherafaldin et al., 2019)

Table 1: Attack Time Zone for CiCDDoS2019 Day 1

Days Attack Attack time

First Day portMap 9:43 -9:51

 NetBIOS 10:00 – 10:09

 LDAP 10:21 – 10:30

 MSSQL 10:33 -10:42

 UDP 10:53 – 11:03

 UDP-LAG 11:14 -11:24

 SYN 11:28-17:35

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 57 Forbacha, et al. (2024)

Table 2: Attack Time Zone for CiCDDoS2019 Day 2

SECOND DAY NTP 10:35 – 10:45

 DNS 10:52 – 11:05

 LDAP 11:22 – 11:32

 MSSQL 11:36 – 11:45

 NetBIOS 11:50 – 12:00

 SNMP 12:12 – 12:23

 SSDP 12:27 – 12:37

 UDP 12:45 – 13:09

 UDP-Lag 13:11 – 13:15

 WebDDoS 13:18 – 13:29

 SYN 13:29 – 13: 34

 TFTP 13: 35 – 17:15

In this dataset, the authors provided two types of data for researchers. One was generated CSV files,

and the other one was raw PCAP files captured from their experiment. The dataset consists of 80

features which we have discussed in the Table 3.

Table 3: Features of Dataset

Feature name Description

Flow Duratiom Time taken for a complete flow in the network

Total fwd packet Total packets in forward direction

Total bwd packet Total packets in backward direction

Total length of fwd packets the total size of packets in the forward direction

Fwd packet length max Maximum size of packets in the forward direction

Fwd packet length min Minimum size of package in forward direction

Fwd packet length mean the average size of packages in the forward direction

Fwd packet length std Standard deviation size of packets in the forward direction

bwd packet length max Maximum size of packets in the backward direction

bwd packet length min Minimum size of packets in the backward direction

bwd packet length mean Mean size of packets in the backward direction

bwd packet length std Standard deviation size of packets in the backward direction

Flow bytes/s Flow bytes rate that is the number of bytes transferd per second

Flow packets/s Flow packets rate that is the number packets transferd per second

Flow IAT Mean the average time between two flows

Flow IAT std Standard deviation time between two flows

Flow IAT Max Maximum time between two flows

Flow IAT Min Minimum time between two flows

Fwd IAT total Total time between two packets sent in the forward direction

Fwd IAT mean the mean time between two packets sent in the forward direction

Fwd IAT std Standard deviation time between two packets sent in the forward

direction

Fwd IAT max Maximum time between two packets sent in the forward direction

Fwd IAT min Minimum time between two packets sent in the forward direction

Bwd IAT total total time between two packets sent in the backward direction

Bwd IAT min Minimum time between two packets sent in the backward direction

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 58 Forbacha, et al. (2024)

Bwd IAT max Maximum time between two packets sent in the backward direction

Bwd IAT mean Mean time between two packets sent in the backward direction

Fwd PSH Flags Number of times the PSH flag was set in packets travelling in the

forward direction (0 for UDP)

Bwd PSH Flags Number of times the PSH flag was set in packets travelling in the

backward direction (0 for UDP)

Fwd URG Flags Number of times the URG flag was set in packets travelling in the

forward direction (0 for UDP)

Bwd URG Flags Number of times the URG flag was set in packets travelling in the

backward direction (0 for UDP)

Fwd Header Length Total bytes used for headers in the forward direction.

Bwd Header Length Total bytes used for headers in the forward direction

Fwd Packets/s Number of forwarding packets per second

Bwd Packets/s Number of backward packets per second

Packet Length Min Minimum length of a flow

Packet Length Max The maximum length of a flow

Packet Length Mean Mean length of a flow

Packet Length Std Standard deviation length of a flow

Packet Length Variance Minimum inter-arrival time of packet

FIN Flag Count Number of packets with FIN

SYN Flag Count Number of packets with SYN

RST Flag Count Number of packets with RST

PSH Flag Count Number of packets with PUSH

ACK Flag Count Number of packets with ACK

URG Flag Count Number of packets with URG

CWE Flag Count Number of packets with CWE

ECE Flag Count Number of packets with ECE

Down/Up Ratio Download and upload ratio

Average Packet Siz The average size of packets

Fwd Segment Size Avg Average size observed in the forward direction

Bwd Segment Size Avg Average size observed in the backward direction

Fwd Bytes/Bulk Avg The average number of bytes bulk rate in the forward direct

Fwd Bulk Rate Avg The average number of bulk rate in the forward direction

Bwd Bytes/Bulk Avg The average number of bytes bulk rate in the backward direction

Bwd Packet/Bulk Avg The average number of packets bulk rate in the backward direction

Bwd Bulk Rate Avg The average number of bulk rate in the backward direction

Subflow Fwd Packet The average number of packets in a sub-flow in the forward

direction

Subflow Fwd Bytes The average number of bytes in a sub-flow in the forward direction

Subflow Bwd Packets The average number of packets in a sub-flow in the backward

direction

Subflow Bwd Bytes The average number of bytes in a sub-flow in the backward

direction

FWD Init Win Bytes Number of bytes sent in the initial window in the forward direction

Bwd Init Win Bytes The number of bytes sent in the initial window in the backward

direction

Fwd Act Data Pkts The number of packets with at least 1 byte of TCP data payload in

the forward direction

Fwd Seg Size Min Minimum segment size observed in the forward direction

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 59 Forbacha, et al. (2024)

Active Mean The mean time a flow was active before becoming idle

Active Std Standard deviation time a flow was active before becoming idle

Active Max The maximum time a flow was active before becoming idle

Active Min The minimum time a flow was active before becoming idle

Idle Mean Meantime a flow was idle before becoming active

Idle Std Standard deviation time a flow was idle before becoming active

Idle Max The maximum time a flow was idle before becoming active

Idle Min The minimum time a flow was idle before becoming active

Data Pre-Processing and Feature Engineering

Data pre-processing is a crucial step that ensures the quality and suitability of data for model training.

This involves cleaning the data by handling missing values and outliers, normalizing data to bring all

features to a similar scale, and encoding categorical variables into a format that can be used by

machine learning algorithms. Feature engineering, on the other hand, involves creating new features

from the existing ones, which could enhance the model's predictive ability. For instance, in our study,

the dataset provided was imbalance so we had to balance the data ensuring both beningn and DDoS

attack data types were of same size taking only the first 40,000 sets for our paper. For feature

engineering since we dealing with a new paradigm of networking we formulated the following new

features for our paper.

Network Metrics Used

The following network metrics were used for detecting DDoS attacks

Speed of Source IP

This feature gives the number of source IPs per unit of time

𝑆𝑆𝐼𝑃 =
SumIPsrc

𝑇

where SumIPsrc is the total number of IP sources incoming in every flow and T is the sampling time

intervals. The time interval T is set to three seconds such that the detection system monitors and

collects data of flows every five seconds and stores the number of source IPs during this duration.

The controller needs to have sufficient data of both normal and attack traffic for the machine learning

algorithm to predict the attacks. For normal attacks the SSIP is usually low and for attack the count

is usually higher.

Speed of Flow Entries

This is the total number of flow entries to the switch in the network within a particular time interval.

This is a very relevant parameter of attack detection because the number of flows increases

significantly in a fixed interval of time in case of an attack as compared to the SFE value in times of

normal traffic flows

 𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝐹𝑙𝑜𝑤 𝐸𝑛𝑡𝑟𝑖𝑒𝑠 =
𝑁

𝑇

Standard Deviation of Flow Packets

This is the standard deviation of the number of packets in the T period. Abbreviated as SDFP, it is

defined as

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 60 Forbacha, et al. (2024)

𝑆𝐷𝐹𝑃 = √
1

𝑛
∑(𝑝𝑎𝑐𝑘𝑒𝑡𝑖

𝑛

𝑖=1

− 𝑚𝑒𝑎𝑛 𝑝𝑎𝑐𝑘𝑒𝑡𝑠)2

where packeti is the number of packets in the i th flow and MeanPackets is the average number of

packets in the T period in the network. This feature has high correlation to the event of a DDoS attack

because in the case of an attack, the attacker sends large number of attack packets whose size is

relatively small and this will have much lower standard deviation than the normal data packets

resulting in a significant drop in this parameter during a DDoS attack.

Standard Deviation of Flow Bytes

 This is the standard deviation of the number of bytes in the T period. Abbreviated as SDFB

𝑆𝐷𝐹𝐵 = √
1

𝑛
∑(𝑏𝑦𝑡𝑒𝑠𝑖

𝑛

𝑖=1

− 𝑚𝑒𝑎𝑛 𝑏𝑦𝑡𝑒𝑠)2

where bytes i is the number of bytes in i th flow and MeanBytes is the average number of bytes in the

time period in the network. Similar to SDFP, SDFB also has high correlation to the event of a DDoS

attack and the expected value of this parameter is lower in case of an attack than in the case of normal

traffic flows.

Ratio of Pair-Flow Entries

This is the number of flow entries in the switch which are interactive divided by the total number of

flows in the T period.

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝐹𝑙𝑜𝑤 𝑝𝑎𝑖𝑟𝑠 =
𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝐼𝑃

𝑁

where InteractiveIP is the total number of interactive IPs in the flow and N is the total number of IPs.

Under normal traffic conditions, the i th flow will have the same source IP as the destination IP of the

j th flow and the j th flow will have the same source IP as the destination IP of the i th flow. This

constitutes an interactive flow which will not be the case under DDoS attack. Under attack, flow

entries to the destination host in time T increases sharply and the destination host is unable to respond

to them. Thus there will be an abrupt decrease in the number of interactive flows as soon as the attack

starts. The total number of interactive flows is divided by the total number of flows so as make this

detection parameter scalable to the network under different operating conditions.

Using these parameters, we trained a various machine learning algorithms to classify the incoming

traffic to a switch as normal or attack.

Model Development and Training

Model development begins with choosing a suitable machine learning algorithm based on the problem

at hand and the nature of the data. For instance, if the goal is to predict whether a patient has a certain

disease (a binary outcome), algorithms like logistic regression, decision trees, random forests, and

support vector machines might be suitable. Training the model involves feeding the processed data

into the chosen algorithm and allowing the algorithm to learn the relationship between features. We

used Support vector machine, Decision tree algortihms to perform training on a train set of 80% and

a testing set of 20%.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 61 Forbacha, et al. (2024)

Network Specification

In carrying out this research work, the SDN framework, data plane has multiple node/hosts virtually

created using mininet and these were all connected to the openflow switch which defines the SDN

protocols and the openflow protocol communicates with the control plane of the framework. Control

plane controls the data plane and the switches and defines rules and also monitors the network traffic

flow, here Ryu controller was used as the controller which provided the programming capabilities

and allowed us to control the routing operations in the network. The control plane was programmed

using pyhton as ryu is a python based controller and uses a python based API to communicate with

the application layer, which in our case is network traffic applications.

Figure 9: Network Specification (Kumar, 2020)

Network Design

The network topology was designed using mininet network simulator, the network has 5 hosts/nodes

and one single openflow switch and one RYU controller. All the hosts were connected to the switch

and the switch was connected to the controller. All of these hosts and switch were controlled by the

ryu controller.

Figure 10: Network Topology (Testbed for Our Work)

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 62 Forbacha, et al. (2024)

Python Codes for the Creation of Our Network

def build(self):

 s1 = self.addSwitch('s1')#,dpid='0000000000002203')

 h1 = self.addHost('h1', ip='10.1.1.1/24', mac="00:00:00:00:00:01", defaultRoute="via

10.1.1.10")

 h2 = self.addHost('h2', ip='10.1.1.2/24', mac="00:00:00:00:00:02", defaultRoute="via

10.1.1.10")

 h3 = self.addHost('h3', ip='10.1.1.3/24', mac="00:00:00:00:00:03", defaultRoute="via

10.1.1.10")

 h4 = self.addHost('h4', ip='10.1.1.4/24', mac="00:00:00:00:00:04", defaultRoute="via

10.1.1.10")

 h5 = self.addHost('h5', ip='10.1.1.5/24', mac="00:00:00:00:00:05", defaultRoute="via

10.1.1.10")

 self.addLink(h1, s1, cls=TCLink, bw=10)

 self.addLink(h2, s1, cls=TCLink, bw=10)

 self.addLink(h3, s1, cls=TCLink, bw=10)

 self.addLink(h4, s1, cls=TCLink, bw=10)

 self.addLink(h5, s1, cls=TCLink, bw=10)

Figure 11: Network Creation with Python

Attack Detection Steps

In our SDN network environment the following steps were taken to collect network traffic and then

classify it as attack or benign.

START:

Step 1: Initialized the SDN Controller and establish communication with the network devices on

Mininet.

Step 2. Load the pre-trained machine learning models, such as SVM, Decision Trees

Step 3. Monitor Real-time Network Traffic:

Continuously captured and monitored real-time network traffic within the SDN environment.

Collected packet headers or flow-level information from incoming network packets.

Step 4 : Extract Relevant Features:

Extracted relevant features from the captured network traffic data.

Step 5. Perform Attack Detection:

Fed the extracted features into the loaded machine learning models.

Utilized the models to classify the network traffic as normal or malicious.

Step 6. Mitigation Actions:

If an attack is detected:

Trigger appropriate mitigation actions; Blocking ports and Dropping the packages

Step 7: Repeat Steps 3-6:

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 63 Forbacha, et al. (2024)

Continuously monitor, extract features, perform attack detection, and trigger mitigation actions in an

iterative manner as new network traffic arrives.

Figure 11 depicts the view of how the process was performed

Figure 12: Steps Taken in SDN Environment to Detect Attack (Kumar, 2020)

Software defined networks has various protocols and controllers, each of those are designed to

perform in a certain way and provide efficiency and flexibility in a particular aspect. The presented

method is implemented using the most popular and out performing tools for the detection and

mitigation of attacks in a software defined network. Openflow Protocol is the most popular and

standard protocol for software defined networks, hence openVswitch is used for this project. As the

presented method is a combination of statistical and machine learning methods, the logic and

techniques are programmed using python. Statistical method includes parameters such as speed of

source IP, speed of flow entries and ratio of flow pair entries, all of these logic is programmed in the

controller.

 Ryu Controller is an open-source python based programmable controller, which is used to define the

rules and logic for the switches to follow in the methodology.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 64 Forbacha, et al. (2024)

Figure 13: RYU Controller Installation

Mininet is a network simulator and creates a virtual network topology with controller, switches and

hosts, in this work a single openVswitch with 1 switch and 5 hosts for the purpose of this work

Attack Generation

Hping3 is a packet generator which generates TCP/IP traffic in the network, it is mostly used to test

network security. Normal and attack traffic scripts are written to generate traffic automatically using

this tool. In this research work we deployed this tool exclusively for the purpose of attack generation.

Below is the sample code for attack used in this project

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 65 Forbacha, et al. (2024)

do

 ping -c1 10.1.1.5

 #TCP SYN flood, , and ICMP flood

 hping3 --rand-source -i u10000 -S -d 64 -c 1000 10.1.1.5

 #UDP flood

 hping3 -2 --rand-source -i u15000 -d 64 -c 1000 10.1.1.5

 #ICMP flood

 hping3 -1 --rand-source -i u20000 -d 64 -c 1000 10.1.1.5

 #TCP SYN flood, , and ICMP flood

 hping3 --rand-source -i u25000 -S -d 64 -c 1000 10.1.1.5

 #UDP flood

 hping3 -2 --rand-source -i u30000 -d 64 -c 1000 10.1.1.5

 #ICMP flood

 hping3 -1 --rand-source -i u 35000 -d 64 -c 1000 10.1.1.5

done

Materials Used

Here, we highlighted all the materials used in the implementation of this project. This included both

software materials ranging from programming language tools, IDE, libraries, dataset and the

hardware materials.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 66 Forbacha, et al. (2024)

Software and library Materials

i. Python Programming Language

ii. Google Colab IDE (Integrated developer’s environment)

iii. Pandas

iv. Numpy

v. Matplotlib

vi. Sklear

vii. Seaborn

viii. Mininet

ix. Oracle VM Virtual box 7.0

Hardware Materials

For the process of design of the platform, a Computer system was used with the following

characteristics:

i. A Dell Latitude 5289

ii. Processor Intel(R) Core (TM) i5-7300U @2.60GHz (4 CPUs)

iii. Random Access Memory: 8.0 GB

iv. Operating System: Windows 11 Pro 64-bits (10.0, Build 21996)

v. Ubuntu 20.04

vi. A modem for internet connection

3.0 FINDINGS

Detection Performance

To evaluate the performance of machine learning algorithms for attack detection in Software Defined

Networking (SDN), we conducted experiments using the Cicddos2019 dataset, which has been

widely used in previous research on Software Defined Networking environment. We trained and

tested two popular machine learning algorithms, Support Vector Machines (SVM) and Decision

Trees, using the CiCDDoS2019 dataset. The performance of each algorithm was assessed based on

following evaluation metrics; accuracy, precision, recall, and F1-score

Table 4: Performance Metrics of ML Algorithms

Algorithm Accuracy Precision Recall F1-Score

Decision Tree 88% 84% 87% 89%

SVM 93% 92% 94% 93%

The results indicate that both SVM and Decision Trees achieved high accuracy in detecting attacks

in SDN. SVM achieved an accuracy of 0.93, with a precision of 0.92, recall of 0.94, and an F1-score

of 0.93. Similarly, Decision Trees achieved an accuracy of 0.88, with a precision of 0.84, recall of

0.87, and an F1-score of 0.89. Indicating these algorithms are suitable for implementation of a

mechanism for attack detection and mitigation is SDN.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 67 Forbacha, et al. (2024)

Network Metric Visualization

Figure 14: SSIP During Normal and Attack Session

From the above figure it show there is aspike in the number of new source IP during an attack.

Figure 15: SDFP in Attack and Normal Session

The figure shows a lower standard of deviation in Flow packages during an attack opposed to a higher

value during a normal session.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 68 Forbacha, et al. (2024)

Figure 16: Ratio of Flow Pairs in Normal and Attack Session

The figure demonstrates a lower ratio of interactive flow during an attack as there are lesser

Acknowledgement messages as the Controller is saturated and flooded.

Presentation of Results on the Software Defined Networking Environment

Our SDN network:

Using the command line shell on ubuntu, run the following command to create our network with

mininet; 5 hosts and 1 server connected to the RYU controller

Sudo python3 topo.py

Figure 17: Network Data Plane Implementation

Data Collection

On another shell, our controller was started using the following command

Ryu-manager app.py

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 69 Forbacha, et al. (2024)

Based on the selected mode, we will have the controller anayse the data from the switch and save it

into result.csv file which will be used for validating our detection model.

Figure 19: RYU Controller in Data Collection Mode; Control Plane

Visualizing Result File

Below is a picture of the result file which contains the calculated values for our network parameters

as discussed in section 3.

It contail the speed of source ip, standard deviation of bytes, standard deviation of packets, ratio of

flow pairs and the duration.

Figure 20: Visualizing the Values in Result File

Mimicking an Attack on Network

After creating our network, we can then change the parameters of our attack bash file using the hping3

tool to mimic an attack on the whole Mininet network.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 70 Forbacha, et al. (2024)

Figure 21: Mimicking Attack in the Data Plane (SDN Network)

The data can then be collected for the attack state as well and saved under the result.csv file as well.

Launching the RYU Controller in Detection Mode

Our ryu contronller can then be started in detection mode to ensure any traffic that passes through the

switch to any part of the host devices is checked for potential attack or not.

Figure 22: Starting the RYU Controller in Detection

At this stage, the controller analyses any traffic in the network and creates the various parameters

which are then passed through the machine learning detection model to detect for attack or not.

Analyzing the Traffic and Displaying the State of the Network

After the controller picks the traffic in the network, it classify the traffic based on the network

parameters and from the model detection, it displays whether we have an attack or not.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 71 Forbacha, et al. (2024)

Figure 23: Analyzing the Network Traffic and Displaying the State of the Networking System

Starting a New Attack in the Mininet Shell

With our network up and active we can then use the hping3 tool to launch a new attack from host 1

to host 5 or any host per say and check the control plane of the RYU controller is the attack has been

detected.

Figure 24: New Attack Using Hping 3 Tool

Attack Detection No Mitigation Engaged

At this stage the detection model is set to only detect the attack and display a warning message to the

screen. At this point we can consider our system as an Intrusion detection system (IDS)

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 72 Forbacha, et al. (2024)

Figure 25: Controller Detects an Attack

Controller Attack Mitigation

In this module, the controller was trained to detect the malicious attack and intent take a decision of

blocking the ports of the attack source and also the packets of the attack.

Figure 26: Controller Mitigates Attack

After dropping the packets and the blocking the source of the attack, the system can then return to its

normal state.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 73 Forbacha, et al. (2024)

Visualizing the Flows in the Network During an Attack

Below is a screenshot showing the flows in our network when the system is under an attack.

Figure 27: Traffic Visualization during an Attack Session

We noticed a good number of new source ip in the network flow during an attack.

Model Evaluation on Mininet Environment

The accuracy score of the model on the system based on attack detection.

Figure 28: Metric Evaluation on the Mininet SDN Network

Figure 28 showed accuracy score and cross validation rate for Support vector machine, Decision tree,

performed at different times.

Discussion

The methodology used in this project was aimed at solving the problem faced by Controllers deployed

in Software defined Networking environments. key objectives were to design a SDN network, create

network flows which mimic both attack and mitigation, deploy a machine learning mechanism to

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 74 Forbacha, et al. (2024)

detect and mitigate these flows in real time. We effectively deployed this mechanism in a Mininet

emulator environment which showed great results in the detection and mitigation of attacks in SDN

as shown in the results above.

In traditional networking environments, there exist firewalls, IPS like Snort, Suricata and many others

which exist but with limited functionalities as they function based on signatures stored in their

security database. We developed and used a Python-based machine learning approach and mechanism

for analyzing the network traffic. The training was carried out on CiCDDoS2019 dataset. Feature

selection was performed and we created new network metrics for the detection of attack; Speed of

Source IP, Speed of Flow entries, Standard Deviation of flow packets, Standard deviation of Flow

entries and Ratio of flow pairs. The results demonstrate the effectiveness of the machine learning-

based attack mitigation techniques in reducing attack traffic and improving network performance.

The dynamic flow control and reconfiguration technique achieved a significant reduction of 93% in

attack traffic detection, these findings align (Amrish et al., 2022) that have also utilized machine

learning algorithms for attack mitigation in SDN. The results indicate that machine learning-based

techniques can effectively mitigate the impact of attacks and optimize network performance in SDN

environments.

Our mechanism showed great mitigation strategy by dropping and blocking affected ports which

aligned with (Kousar et al., 2021) study on dynamic flow monitoring and adjustment, this technique

involves dynamically adjusting flow rules in the network to divert or drop traffic associated with

detected attacks. By reconfiguring the network flow paths, malicious traffic can be isolated or

redirected to mitigate the impact on legitimate traffic.

While the results of this research demonstrated the effectiveness of machine learning algorithms for

enhancing attack detection and mitigation in SDN, there are some limitations that need to be

acknowledged. First, the performance of the machine learning algorithms heavily relied on the quality

and representativeness of the training dataset. The CiCDDoS2019 dataset used in this study, while

widely used in previous research, may not cover all possible attack scenarios and network

environments with matches same issues (Sharafaldin et al., 2019) discussed in their work and reason

they engaged in the creation of the CiCDDoS2019 dataset.

Overall, the results and discussion highlight the potential of machine learning algorithms, particularly

SVM and Decision Trees, in enhancing attack detection and mitigation in SDN. The research provides

insights into their performance, impact on network performance, and a guide for future research and

implementations in real world enterprise networks.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Conclusion

In this study we explored the capabilities of integrating machine learning models to effectively detect

and mitigate attacks in Software Defined Networking Environment. Software defined network

provides us the capabilities to design and perform operations in the network by programming which

is not case with traditional networks. While SDN is changing the networking industry and a promising

future technology it currently has mostly research applications and very few industry applications by

the major players. With the control plane of the SDN network resting in the controller, it becomes so

easy for attackers to target the controller and take control of the entire network. Protecting the

controller by detecting and mitigating against any intrusion was the objective of this research. The

research and development efforts in enhancing attack detection and mitigation in SDN using machine

learning are crucial for addressing the evolving landscape of network security threats. By harnessing

the power of machine learning algorithms, SDN can become more intelligent, adaptive, and capable

of defending against sophisticated attacks. As the field of machine learning and SDN continues to

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 75 Forbacha, et al. (2024)

advance, further research and collaboration are needed to overcome the challenges and unlock the

full potential of this technology in securing our networks.

The implemented method is a combination of statistical features; speed of source IP, speed of flow

entries , flow count and ratio of flow-pair and machine learning algorithm to detect and predict DDOS

attacks in the network, experimented results shows the presented method provided high accuracy,

higher detection rate with lesser false predictions.

Recommendations

Based on the findings and knowledge acquired, some key recommendations for successful

implementation of an Enhanced attack and detection scheme in SDN include:

i. Use deep learning and Ensemble learning as the system will have an awareness of its state

and hence have better accuracy and less false alarm rates.

ii. Conducting thorough feature analysis and selection based on statistical techniques, correlation

analysis, and domain knowledge.

iii. Experimenting with multiple algorithms like Deep Neural Networks, Ensemble Learning

algorithms.

iv. Optimizing the system to minimize computational overhead and ensure real-time processing.

v. Performing the study on a Real world SDN environment to ensure proper knowledge of the

data flow patterns in real world environments.

vi. Use multiple datasets in the implementation of the system.

Contribution

This research project has contributed significantly in advancing knowledge by providing a

mechanism that can be deployed to secure real world networks of various companies especially those

deployed through the concept of Software defined networking in detecting and mitigating attacks in

real-time. Providing new ways of implementing intrusion detection and intrusion prevention systems

using the mechanism of machine learning. Our approach has the ability to determine normal traffic

from abnormal traffic and to detect and attack in a system in real time with high accuracy and low-

rate false alarms.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 76 Forbacha, et al. (2024)

REFERENCES

Aksu, Doğukan & Ustebay, Serpil & Aydin, M.Ali & Atmaca, Tülin. (2018). Intrusion Detection

with Comparative Analysis of Supervised Learning Techniques and Fisher Score Feature

Selection Algorithm. 10.1007/978-3-030-00840-6_16.

Amrish, R., Bavapriyan, K., Gopinaath, V., Jawahar, A., & Kumar, C. V. (2022). DDoS detection

using machine learning techniques. Journal of IoT in Social, Mobile, Analytics, and Cloud,

4(1), 24-32.

Bawany, N. Z., Shamsi, J. A., & Salah, K. (2017). DDoS attack detection and mitigation using

SDN: methods, practices, and solutions. Arabian Journal for Science and Engineering, 42,

425-441.

Bergstra, J., Yamins, D., & Cox, D. D. (2013, June). Hyperopt: A python library for optimizing the

hyperparameters of machine learning algorithms. In Proceedings of the 12th Python in

science conference (Vol. 13, p. 20).

Cameron Magazine (2021). https://www.cameroonmagazine.com/actualite-internationale/cm-

software-defined-networking-sdn-market-development-strategies-growth-rate-and-

opportunity-assessment-till-2025/

C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, 2017 “DDoS in the IoT: Mirai and other

botnets,” Computer (Long Beach Calif), vol. 50, no. 7, doi: 10.1109/MC.2017.201Carlos

Javier, Gonzalez. (2017). Management of a heterogeneous distributed architecture with the

SDN.

Chan P & Vargiya, R. (2013). Boundary Detection in Tokenizing Network Application Payload for

Anomaly Detection. Melbourne: Florida Institute of Technology

Chen, W.-K., 1993. Linear Networks and Systems. Wadsworth, Belmont, CA, USA, pp. 123–135.

Chirag N. Modi, Dhiren R. Patel, Avi Patel, et al. “Bayesian Classifier and Snort based network

intrusion detection system in cloud computing”. In: 2012 Third International Conference on

Computing, Communication and Networking Technologies (ICCCNT’12). ISSN: null. July

2012, pp. 1–7. doi: 10 . 1109 / ICCCNT.2012.6396086.

DDoS attack that disrupted internet was largest of its kind in history, experts say | Hacking | The

Guardian.” https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-

botnet (accessed May . 10, 2023).

Eliyan, L.F.; Di Pietro, (2021). DoS and DDoS attacks in Software Defined Networks: A survey of

existing solutions and research challenges. Future Gener. Comput. Syst.

Elsayed, M. S., Le-Khac, N. A., Dev, S., & Jurcut, A. D. (2019, October). Machine-learning

techniques for detecting attacks in SDN. In 2019 IEEE 7th International Conference on

Computer Science and Network Technology (ICCSNT) (pp. 277-281). IEEE.

Farhady, H., Lee, H., & Nakao, A. (2015). Software-defined networking: A survey. Computer

Networks, 81, 79-95.

Garg, S., Kaur, K., Kumar, N., Kaddoum, G., Zomaya, A. Y., & Ranjan, R. (2019). A hybrid deep

learning-based model for anomaly detection in cloud datacenter networks. IEEE

Transactions on Network and Service Management, 16(3), 924-935.

Gueant, V. (2021). iPerf-iPerf3 and iPerf2 user documentation. Iperf. fr.

Gong, D. F. (2003). Deciphering Detection Techniques: Part II Anomaly-Based Intrusion

Detection. McAfee Security.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 77 Forbacha, et al. (2024)

Hande, Y., & Muddana, A. (2019, November). Intrusion detection system using deep learning for

software defined networks (SDN). In 2019 International Conference on Smart Systems and

Inventive Technology (ICSSIT) (pp. 1014-1018). IEEE.

Hardesty, L. (2017). Google Brings SDN to the Public Internet. sdxcentral:

https://www.sdxcentral.com/articles/news/google-brings-sdn-publicinternet/2017/04/,

Access Date:21.04.2023

Hinden, R. M. (2014). SDN And Security: Why take over the hosts while you can take the whole

network. RSA Conference: Capitalizing on collective intelligence. San Francisco.

Hussain, J., & Hnamte, V. (2021, September). A novel deep learning based intrusion detection

system: Software defined network. In 2021 International Conference on innovation and

intelligence for informatics, computing, and technologies (3ICT) (pp. 506-511). IEEE.

Islam, Md Tariqul & Islam, Nazrul & Refat, Md. (2020). Node to Node Performance Evaluation

through RYU SDN Controller. Wireless Personal Communications. 112. 10.1007/s11277-

020-07060-4.

“Isms family of standards,” standard, International Organization for Standardization, Geneva, CH,

2018

Jammal, M., Singh, T., Shami, A., Asal, R., & Li, Y. (2014). Software defined networking: State of

the art and research challenges. Computer Networks, 72, 74-98.

Janabi, A. H., Kanakis, T., & Johnson, M. (2022). Convolutional neural network based algorithm

for early warning proactive system security in software defined networks. IEEE Access, 10,

14301-14310.

Javaid, A., Niyaz, Q., Sun, W., (2016, May). A deep learning approach for network intrusion

detection system. In Proceedings of the 9th EAI International Conference on Bio-inspired

Information and Communications Technologies (formerly BIONETICS) (pp. 21-26).

Jafarian, Tohid & Masdari, Mohammad & Ghaffari, Ali & Majidzadeh, Kambiz. (2020). Security

anomaly detection in software-defined networking based on a prediction technique.

International Journal of Communication Systems. 33. e4524. 10.1002/dac.4524.

Junhong T (2020) A Machine Learning Framework for Host Based Intrusion Detection using

machine learning.

Kanakarajan, N. K., & Muniasamy, K. (2016). Improving the accuracy of intrusion detection using

gar-forest with feature selection. In Proceedings of the 4th International Conference on

Frontiers in Intelligent Computing: Theory and Applications (FICTA) 2015 (pp. 539-547).

Springer India.

Kaur, Sukhveer & Singh, Japinder & Ghumman, Navtej. (2014). Network Programmability Using

POX Controller. 10.13140/RG.2.1.1950.6961.

Kolias, N., Moustafa, N., & Sitnikova, E. (2017). Forensics and deep learning mechanisms for

botnets in internet of things: A survey of challenges and solutions. IEEE Access, 7, 61764-

61785.

Kousar, H., Mulla, M. M., Shettar, P., & Narayan, D. G. (2021, June). Detection of DDoS attacks in

software defined network using decision tree. In 2021 10th IEEE International Conference

on Communication Systems and Network Technologies (CSNT) (pp. 783-788). IEEE.

Kurochkin, I. I., & Volkov, S. S. (2020, September). Using GRU based deep neural network for

intrusion detection in software-defined networks. In IOP Conference Series: Materials

Science and Engineering (Vol. 927, No. 1, p. 012035). IOP Publishing.

http://www.ajpojournals.org/

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 78 Forbacha, et al. (2024)

Kumar Singh, V. (2020). DDOS attack detection and mitigation using statistical and machine

learning methods in SDN (Doctoral dissertation, Dublin, National College of Ireland).

Labonne, M., Olivereau, A., Polvé, B., & Zeghlache, D. (2019, January). A cascade-structured

meta-specialists approach for neural network-based intrusion detection. In 2019 16th IEEE

Annual Consumer Communications & Networking Conference (CCNC) (pp. 1-6). IEEE

Le J (2017). A logitboost-based algorithm for detecting known and unknown attacks in Networks

Lemaître, G., Nogueira, F., & Aridas, C. K. (2017). Imbalanced-learn: A python toolbox to tackle

the curse of imbalanced datasets in machine learning. The Journal of Machine Learning

Research, 18(1), 559-563.

Leung, K., & Leckie, C. (2005, January). Unsupervised anomaly detection in network intrusion

detection using clusters. In Proceedings of the Twenty-eighth Australasian conference on

Computer Science-Volume 38 (pp. 333-342).

 Lim, A. (2015, July). Security risks in SDN and other new software issues. In RSA Conference.

M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker , 2007, Ethane: Taking

Control of the Enterprise in Proceedings of the 2007 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communications, ser. SIGCOMM

07. ACM

Martin Casado (December 2007). "Architectural Support for Security Management in Enterprise

Networks" (PDF). PhD dissertation. Stanford University. Retrieved October 30, 2016

Mell, P. (2007). Intrusion detection and prevention systems. In Handbook of Information and

Communication Security (pp. 177-192). Berlin, Heidelberg: Springer Berlin Heidelberg.

Metzler, J. (2014). SDN and Network Virtualization: A Reality Check. Network World:

https://www.networkworld.com/article/2604023/software-definednetworking/sdn-and-

network-virtualization-a-reality-check.html, Access date:6.05.2023.

Mittal, Sangeeta. (2018). Performance Evaluation of Openflow SDN Controllers. 10.1007/978-3-

319-76348-4_87.

Modi, M., Abd Allah, M., & Tawfik, B. (2012). Intrusion detection model using naive bayes and

deep learning technique. Int. Arab J.

Myint oo, S., & Kaur, G. (2019). SVM Implementation for DDoS Attacks in Software Defined

Networks. International Journal of Innovative Technology and Exploring Engineering

Nakandala, S., Zhang, Y., & Kumar, A. (2020). Cerebro: A data system for optimized deep learning

model selection. Proceedings of the VLDB Endowment, 13(12), 2159-2173.

Neupane, R.L., Neely, T., Chettri, N., Vassell, M., Zhang, Y., Calyam, P., Durairajan, R.: Dolus,

2018. In: Proceedings of the 19th International Conference on Distributed Computing and

Networking - ICDCN ’18. pp. 1–10. ACM Press, New York, New York, USA

"NSL-KDD | Datasets | Research | Canadian Institute for Cybersecurity | UNB."

https://www.unb.ca/cic/datasets/nsl.html (accessed May 07, 2023).

Nunez, A., Ayoka, J., Islam, M. Z., & Ruiz, P. (2023). A Brief Overview of Software-Defined

Networking. arXiv preprint arXiv:2302.00165.

P. FARINA, E. CAMBIASO, G. PAPALEO and M. AIELLO, 2015 “Understanding DDoS Attacks

from Mobile Devices” 3rd International Conference on Future Internet of Things and Cloud,

Rome

http://www.ajpojournals.org/
http://yuba.stanford.edu/~casado/mcthesis.pdf
http://yuba.stanford.edu/~casado/mcthesis.pdf

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 79 Forbacha, et al. (2024)

Preprocessing data — scikit-learn 0.22.2 documentation. retrieved: https:// scikit-

learn.org/stable/modules/preprocessing.html (visited on 03/06/2023)

R. T. Kokila, S. T. Selvi and K. Govindarajan 2014, “DDoS detection and analysis in SDN-based

environment using support vector machine classifier,” IEEE sixth international conference

on advanced computing (ICoAC) (pp. 205-210).

Rajendra Patil, Harsha Dudeja, Snehal Gawade, et al. “Protocol Specific MultiThreaded Network

Intrusion Detection System (PM-NIDS) for DoS/DDoS Attack Detection in Cloud”. In:

2018 9th International Conference on Computing, Communication and Networking

Technologies (ICCCNT). ISSN: null. July 2018, pp. 1–7. doi:

10.1109/ICCCNT.2018.8494130.

Ring, M., Wunderlich, S., Scheuring, D., Landes, D., & Hotho, A. (2019). A survey of network-

based intrusion detection data sets. Computers & Security, 86, 147-167.

Roesch, M. (1999, November). Snort: Lightweight intrusion detection for networks. In Lisa (Vol.

99, No. 1, pp. 229-238).

S. KUMAR and K. M. CARLEY 2016, Understanding DDoS cyber-attacks using social media

analytics, 2016 IEEE Conference on Intelligence and Security Informatics (ISI), Tucson,

AZ, pp. 231–236,

Sahay, and G. Blanc 2017, “ArOMA: An SDN based autonomic DDoS mitigation framework,”

computers & security, 70, 482-49

Santos, R., Souza, D., Santo, W., Ribeiro, A. and Moreno, E. (2019). Machine learning algorithms

to detect ddos attacks in sdn, Concurrency and Computation: Practice and Experience p.

e5402. JCR Impact Factor: 1.167 (2019).

Sarioguz, O., & Miser, E. (2024). Artificial intelligence and participatory leadership: The role of

technological transformation in business management and its impact on employee

participation. International Research Journal of Modernization in Engineering, Technology

and Science, 6(2), Article 1618. https://www.doi.org/10.56726/IRJMETS49539

Schneider, P. (2015). SDN security : Nokia Research perspective . Nokia Solutions and Networks

 sdxcentral. (n.d.). Why SDN or NFV Now? www.sdxcentral.com:

https://www.sdxcentral.com/sdn/definitions/why-sdn-software-definednetworking-or-nfv-

network-functions-virtualization-now/, Access Date:15.06.2023

Sharafaldin, I., Lashkari, A. H., Hakak, S., & Ghorbani, A. A. (2019, October). Developing realistic

distributed denial of service (DDoS) attack dataset and taxonomy. In 2019 International

Carnahan Conference on Security Technology (ICCST) (pp. 1-8). IEEE.

Shoeb, A., & Chithralekha, T. (2016, March). Resource management of switches and Controller

during saturation time to avoid DDoS in SDN. In 2016 IEEE International Conference on

Engineering and Technology (ICETECH) (pp. 152-157). IEEE.

Simkin, S. (2017). What Is An Intrusion Detection System? https://www.paloaltonetworks.com:

https://www.paloaltonetworks.com/cyberpedia/what-is-an-intrusiondetection-system-ids

Sinha, S., Sinha, S., & Karkal. (2018). Beginning Ethical Hacking with Kali Linux. Apress.

Tama, B. A., Patil, A. S., & Rhee, K. H. (2017, August). An improved model of anomaly detection

using two-level classifier ensemble. In 2017 12th Asia joint conference on information

security (AsiaJCIS) (pp. 1-4). IEEE.

Tandon, Rajat. (2020). A Survey of Distributed Denial of Service Attacks and Defenses.

10.48550/arXiv.2008.01345.

http://www.ajpojournals.org/
https://www.paloaltonetworks.com/cyberpedia/what-is-an-intrusiondetection-system-ids

American Journal of Computing and Engineering

ISSN 2790-5586 (Online)

Vol.7, Issue 3, pp 40 – 80, 2024 www.ajpojournals.org

https://doi.org/10.47672/ajce.2120 80 Forbacha, et al. (2024)

Tang, T. et al., (2016, October). Deep learning approach for network intrusion detection in software

defined networking. In 2016 international conference on wireless networks and mobile

communications (WINCOM) (pp. 258-263). IEEE.

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009, July). A detailed analysis of the KDD

CUP 99 data set. In 2009 IEEE symposium on computational intelligence for security and

defense applications (pp. 1-6). Ieee.

Tom Fawcett. “An introduction to ROC analysis”. en. In: Pattern Recognition Letters 27.8 (June

2020), pp. 861–874. issn: 01678655. doi: 10.1016/j. patrec.2005.10.010. url:

https://linkinghub.elsevier.com/retrieve/ pii/S016786550500303X (visited on 02/26/2023)

Visual Studio Code—Code Editing. Redefined. (n.d.). Retrieved May 12, 2023, from

https://code.visualstudio.com/

Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2017, September). Applying convolutional

neural network for network intrusion detection. In 2017 International Conference on

Advances in Computing, Communications and Informatics (ICACCI) (pp. 1222-1228). IEEE

Vnware. (s.d.). What is an intrusion prevention system? Accessed at

https://www.vmware.com/topics/glossary/content/intrusion-prevention-system.html

Walkowski, D. (2019). What is the CIA Triad. F5 Labs, 9.

Werlinger, R., Hawkey, K., Muldner, K., Jaferian, P., & Beznosov, K. (2008, July). The challenges

of using an intrusion detection system: is it worth the effort?. In Proceedings of the 4th

symposium on Usable privacy and security (pp. 107-118).

Yang, C., Liu, J., Kristiani, E., Liu, M., You, I., and Pau, G. (2020). Netflow monitoring and

cyberattack detection using deep learning with ceph. IEEE Access, 8, 7842-7850.

10.1109/ACCESS.2019.2963716

Zhang, N., Jaafar, F., & Malik, Y. (2019, June). Low-rate DoS attack detection using PSD based

entropy and machine learning. In 2019 6th IEEE International Conference on Cyber

Security and Cloud Computing (CSCloud)/2019 5th IEEE International Conference on Edge

Computing and Scalable Cloud (EdgeCom) (pp. 59-62). IEEE.

License

Copyright (c) 2024 Suh Charles Forbacha, Maah Kelvin Kinteh, Eng. Mohamadou Hamza

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work

simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows

others to share the work with an acknowledgment of the work's authorship and initial publication in

this journal.

http://www.ajpojournals.org/
https://code.visualstudio.com/
https://www.vmware.com/topics/glossary/content/intrusion-prevention-system.html
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

